Hidden symmetry of free Fermion model I. Triangle equation and symmetric parametrization
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 3, pp. 377-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-known eight-vertex model of free fermions on a plane lattice is considered. Using the triangle equation and the symmetry properties of the model, we construct an elliptic parametrization for the Boltzmann vertex weights. In this parametrization, the weights are meromorphie functions of three complex variables.
@article{TMF_1985_62_3_a5,
     author = {V. V. Bazhanov and Yu. G. Stroganov},
     title = {Hidden symmetry of free {Fermion} model {I.~Triangle} equation and symmetric parametrization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {377--387},
     year = {1985},
     volume = {62},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a5/}
}
TY  - JOUR
AU  - V. V. Bazhanov
AU  - Yu. G. Stroganov
TI  - Hidden symmetry of free Fermion model I. Triangle equation and symmetric parametrization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 377
EP  - 387
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a5/
LA  - ru
ID  - TMF_1985_62_3_a5
ER  - 
%0 Journal Article
%A V. V. Bazhanov
%A Yu. G. Stroganov
%T Hidden symmetry of free Fermion model I. Triangle equation and symmetric parametrization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 377-387
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a5/
%G ru
%F TMF_1985_62_3_a5
V. V. Bazhanov; Yu. G. Stroganov. Hidden symmetry of free Fermion model I. Triangle equation and symmetric parametrization. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 3, pp. 377-387. http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a5/

[1] Karowski M., Thun H., Truong T., Weisz P., Phys. Lett., B67:3 (1977), 321–323 | DOI

[2] Baxter R. J., Ann. Phys., 70:1 (1972), 193–228 | DOI | MR | Zbl

[3] Fan C., Wu F. Y., Phys. Rev., B2:3 (1970), 723–733 | DOI

[4] Krinsky S., Phys. Lett., 39A:1 (1972), 169–170 | DOI

[5] Bazhanov V. V., Stroganov Yu. G., Nucl. Phys., B230 [FS10] (1984), 435–454 | DOI | MR

[6] Izergin A. G., Korepin V. E., EChAYa, 13:3 (1982), 501–541 | MR

[7] Stroganov Yu. G., Phys. Lett., 74A:1 (1979), 116–119 | DOI | MR

[8] Zamolodchikov A. B., Sov. Sci. Rev., 2 (1980), 1–29

[9] Baxter R. J., Fundamental Problems in Statistical Mechanics, Vol. 5, Horth-Holland, Amsterdam, 1980 | MR

[10] Zamolodchikov A. B., Commun. Math. Phys., 79:4 (1981), 489–505 | DOI | MR

[11] Baxter R. J., Phyl. Trans. Roy. Soc., 289A:1359 (1978), 315–346 | DOI | MR

[12] Sutherland B., J. Math. Phys., 11:11 (1970), 3138–3186 | DOI

[13] Felderhof B. U., Physica, 66:2 (1973), 279–297 | DOI | MR

[14] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR