Local fields in the inverse scattering method
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 3, pp. 323-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Poisson brackets (cot:mutation relations) of the local fieIds are calculated for the model of the nonlinear Schrödinger equation on the basis of the postulated Gel'fand–Levitan–Marchenko equations and the Poisson brackets (commutation relations) of the scattering data. Some other models are also discussed.
@article{TMF_1985_62_3_a0,
     author = {I. M. Khamitov},
     title = {Local fields in the inverse scattering method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--334},
     year = {1985},
     volume = {62},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a0/}
}
TY  - JOUR
AU  - I. M. Khamitov
TI  - Local fields in the inverse scattering method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 323
EP  - 334
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a0/
LA  - ru
ID  - TMF_1985_62_3_a0
ER  - 
%0 Journal Article
%A I. M. Khamitov
%T Local fields in the inverse scattering method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 323-334
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a0/
%G ru
%F TMF_1985_62_3_a0
I. M. Khamitov. Local fields in the inverse scattering method. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 3, pp. 323-334. http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a0/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980, 319 pp. | MR

[2] Sklyanin E. K., Faddeev L. D., DAN SSSR, 243:6 (1978), 1430–1433

[3] Sklyanin E. K., DAN SSSR, 244:6 (1978), 1337–1341 | MR

[4] Sklyanin E. K., Zap. nauchn. semin. LOMI, 95, 1980, 55–128 | MR | Zbl

[5] Thacker H. B., Wilkinson D., Phys. Rev., D19:12 (1979), 3660–3665 | MR | Zbl

[6] Creamer D. B., Thacker H. B., Wilkinson D., Phys. Rev., D21:6 (1980), 1523–1528 | MR

[7] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., TMF, 40:2 (1979), 194–220 | MR

[8] Zakharov V. E., Shabat A. B., ZhETF, 61:1 (1971), 118–134 | MR

[9] Zakharov V. E., Manakov S. V., TMF, 19:3 (1974), 332–343 | Zbl

[10] Davies B., J. Phys. A, 14:10 (1981), 2631–2644 | DOI | MR | Zbl

[11] Ablowitz M. J., Ramani A., Segur H., J. Math. Phys., 21:5 (1981), 1006–1015 | DOI | MR

[12] Faddeev L. D., UMN, 14:4 (1959), 57–119 | MR

[13] Faddeev L. D., Tr. MIAN SSSR, 73, 1964, 314–336 | MR | Zbl

[14] Faddeev L. D., “Kvantovye vpolne integriruemye modeli teorii polya”, Problemy kvantovoi teorii polya, Tr. V Mezhdunarodnogo soveschaniya po nelokalnym teoriyam polya (Alushta, 1979), OIYaI, Dubna, 1979, 249–299

[15] Smirnov F. A., DAN SSSR, 262:1 (1982), 78–83 | MR

[16] Göckeler M., Z. Phys. C, 11:2 (1981), 125–134 | DOI | MR

[17] Izergin A. G., Korepin V. E., Smirnov F. A., TMF, 48:3 (1981), 319–323 | MR