Solution of the system of Lorenz equations in the asymptotic limit of large Rayleigh numbers I
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 272-290
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A quantum Fokker–Planck equation is derived for a model system of a single-mode laser based on two-level atoms with dynamics of the trajectories described by the nonlinear differential Lorenz system. The trajectories are investigated in the asymptotic limit of strong pumping, or large Rayleigh number, in the region of applicability of averaging methods. Two bifurcations that arise when the damping constant of the field is varied are described: the appearance of limit cycles and Hopf inverse bifurcation.
@article{TMF_1985_62_2_a9,
     author = {L. A. Pokrovskii},
     title = {Solution of the system of {Lorenz} equations in the asymptotic limit of large {Rayleigh} {numbers~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {272--290},
     year = {1985},
     volume = {62},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a9/}
}
TY  - JOUR
AU  - L. A. Pokrovskii
TI  - Solution of the system of Lorenz equations in the asymptotic limit of large Rayleigh numbers I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 272
EP  - 290
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a9/
LA  - ru
ID  - TMF_1985_62_2_a9
ER  - 
%0 Journal Article
%A L. A. Pokrovskii
%T Solution of the system of Lorenz equations in the asymptotic limit of large Rayleigh numbers I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 272-290
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a9/
%G ru
%F TMF_1985_62_2_a9
L. A. Pokrovskii. Solution of the system of Lorenz equations in the asymptotic limit of large Rayleigh numbers I. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 272-290. http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a9/

[1] Lorenz E. N., J. of Atmospheric Sciences, 20 (1963), 130 ; Strannye attraktory, Mir, M., 1981 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[2] Oraevskii A. N., Kvantovaya elektronika, 8 (1981), 130–142

[3] Haken H., Phys. Lett., 53A (1975), 77–78 | DOI

[4] Zaslavskii G. M., Statisticheskaya neobratimost v nelineinykh sistemakh, Nauka, M., 1970 | Zbl

[5] Bunimovich A. A., Sinai Ya. G., “Stokhastichnost attraktora v modeli Lorentsa”, Nelineinye volny, Nauka, M., 1979

[6] Strannye attraktory, Sbornik, Mir, M., 1981 | MR

[7] Rabinovich M. I., UFN, 125 (1978), 123–142 | DOI | MR

[8] Gaponov-Grekhov A. V., Rabinovich M. I., UFN, 128 (1979), 579–601 | DOI | MR

[9] Afraimovich V. S., Bykov V. V., Shilnikov L. P., DAN SSSR, 234 (1977), 336–339 | Zbl

[10] Afraimovich V. S., Bykov V. V., Shilnikov L. Ya., Tr. Mosk. matem. ob., 44, 1982, 150–212 | MR | Zbl

[11] Shilnikov L. P., “Teoriya bifurkatsii i model Lorentsa”, Dopolnenie II k kn.: Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR

[12] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1979 | MR | Zbl

[13] Bogolyubov N. N., Zubarev D. N., UMZh, VII (1955), 5–13 | MR

[14] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR

[15] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[16] Oraevskii A. N., Molekulyarnye generatory, Nauka, M., 1964

[17] Gordon J. P., Phys. Rev., 161 (1967), 367–381 | DOI

[18] Haken H., Handbuch der Physik, Springer, Berlin, 1970

[19] Allen L., Eberli Dzh., Opticheskii rezonans i dvukhurovnevye atomy, Mir, M., 1978

[20] Klimontovich Yu. L., Kineticheskaya teoriya elektromagnitnykh protsessov, Nauka, M., 1980

[21] Robbins K. A., SIAM J. Appl. Math., 36 (1979), 457–472 | DOI | MR | Zbl

[22] Iorke Dzh., Iorke E., “Metastabilnyi khaos”, Strannye attraktory, Mir, M., 1981, 193–212 | MR

[23] Pokrovskii L. A., TMF, 37 (1978), 102–117 | MR

[24] Pokrovskii L. A., Khazanov A. M., TMF, 50 (1982), 146–154 | MR

[25] Pokrovsky L. A., Physica, 105 (1981), 105–122 | DOI

[26] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatgiz, M., 1959 | MR

[27] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[28] Bautin N. P., Shilnikov L. P., Dopolnenie I k kn.: Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[29] Roschin N. V., PMM, 5 (1978), 950–952

[30] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR