Quasi-Taylor series in the theory of magnetism
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 263-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Summation formulas are derived for quasi-Taylor series that arise in the diagram technique for spin operators and correspond to $m$-point correlations of the spins. In the approximation of self-consistent pair correlations, we obtain an equation of state of an Ising ferromagnet $(d=3)$ valid in a wide range of temperatures and magnetic fields except for a narrow neighborhood of the critical point. In the same approximation, we calculate the shape of the magnetic resonance line of the Ising ferromagnet; it is Gaussian. In the limit $T\to\infty$, complete summation of the quasi- Taylor series yields an exact expression for the line shape.
@article{TMF_1985_62_2_a8,
     author = {D. A. Garanin and V. S. Lutovinov},
     title = {Quasi-Taylor series in the theory of magnetism},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--271},
     year = {1985},
     volume = {62},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a8/}
}
TY  - JOUR
AU  - D. A. Garanin
AU  - V. S. Lutovinov
TI  - Quasi-Taylor series in the theory of magnetism
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 263
EP  - 271
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a8/
LA  - ru
ID  - TMF_1985_62_2_a8
ER  - 
%0 Journal Article
%A D. A. Garanin
%A V. S. Lutovinov
%T Quasi-Taylor series in the theory of magnetism
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 263-271
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a8/
%G ru
%F TMF_1985_62_2_a8
D. A. Garanin; V. S. Lutovinov. Quasi-Taylor series in the theory of magnetism. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 263-271. http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a8/

[1] Vaks V. G., Larkin A. I., Pikin S. A., ZhETF, 53:1 (1967), 281–291

[2] Pikalev E. M., Savchenko M. A., Shoiom I., ZhETF, 55:4 (1969), 1404–1414

[3] Izyumov Yu. A., Kassan-ogly F. A., Skryabin Yu. N., Polevye metody v teorii ferromagnetizma, Nauka, M., 1974

[4] Garanin D. A., Lutovinov V. S., Sol. St. Comm., 44:9 (1982), 1359–1362 | DOI

[5] Garanin D. A., Lutovinov V. S., ZhETF, 85:6 (1983), 2060–2075

[6] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E., Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962 | MR | Zbl

[7] Izyumov Yu. A., Kassan-ogly F. A., FMM, 30:3 (1970), 449–452

[8] Kuhnel A., Schneider J., Trimper S., Wiss. Z. Karl-Marx-Univ., Leipzig, 2:2 (1971), 303–312

[9] Burley D. M., Phil. Mag., 5:57 (1960), 909–919 | DOI

[10] Domb C., Sykes M. F., Proc. Roy. Soc., A240:1221 (1957), 214–228 | DOI | Zbl

[11] Domb C., Sykes M. F., Phys. Rev., 128:1 (1962), 168–173 | DOI | Zbl

[12] Fisher M. E., Journ. Math. Phys., 4:2 (1963), 278–286 | DOI | MR | Zbl

[13] Essam I. W., Sykes M. F., Physica, 29:4 (1963), 378–388 | DOI | MR

[14] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[15] Tserkovnikov Yu. A., TMF, 11:3 (1972), 385–402

[16] Garanin D. A., Lutovinov V. S., Sol. St. Comm., 49:11 (1984), 1049–1052 | DOI

[17] Garanin D. A., Lutovinov V. S., Sol. St. Comm., 50:3 (1984), 219–222 | DOI