Quasi-Taylor series in the theory of magnetism
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 263-271
Voir la notice de l'article provenant de la source Math-Net.Ru
Summation formulas are derived for quasi-Taylor series that arise in the diagram
technique for spin operators and correspond to $m$-point correlations of the spins.
In the approximation of self-consistent pair correlations, we obtain an equation of
state of an Ising ferromagnet $(d=3)$ valid in a wide range of temperatures and
magnetic fields except for a narrow neighborhood of the critical point. In the same
approximation, we calculate the shape of the magnetic resonance line of the Ising
ferromagnet; it is Gaussian. In the limit $T\to\infty$, complete summation of the quasi-
Taylor series yields an exact expression for the line shape.
@article{TMF_1985_62_2_a8,
author = {D. A. Garanin and V. S. Lutovinov},
title = {Quasi-Taylor series in the theory of magnetism},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {263--271},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a8/}
}
D. A. Garanin; V. S. Lutovinov. Quasi-Taylor series in the theory of magnetism. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 263-271. http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a8/