Continuous models of percolation theory. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 253-262 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Percolation models in which the centers of defects are distributed randomly in space in accordance with Poisson's law and the shape of each defect is also random are considered. Methods of obtaining rigorous estimates of the critical densities are described. It is shown that the number of infinite clusters can take only three values: 0, 1, or $\infty$. Models in which the defects have an elongated shape and a random orientation are investigated in detail. In the two-dimensional case, it is shown that the critical volume concentration of the defects is proportional to $a/l$, where $l$ and $a$ are, respectively, the major and minor axes of the defect; the mean number of (direct) bonds per defect when percolation occurs is bounded.
@article{TMF_1985_62_2_a7,
     author = {S. A. Zuev and A. F. Sidorenko},
     title = {Continuous models of percolation {theory.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {253--262},
     year = {1985},
     volume = {62},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a7/}
}
TY  - JOUR
AU  - S. A. Zuev
AU  - A. F. Sidorenko
TI  - Continuous models of percolation theory. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 253
EP  - 262
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a7/
LA  - ru
ID  - TMF_1985_62_2_a7
ER  - 
%0 Journal Article
%A S. A. Zuev
%A A. F. Sidorenko
%T Continuous models of percolation theory. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 253-262
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a7/
%G ru
%F TMF_1985_62_2_a7
S. A. Zuev; A. F. Sidorenko. Continuous models of percolation theory. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 253-262. http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a7/

[1] Zuev S. A., Sidorenko A. F., TMF, 62:1 (1985), 76–86 | MR

[2] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR

[3] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[4] Shklovskii B. I., Efros A. L., Elektronnye svoistva legirovannykh poluprovodnikov, Nauka, M., 1979

[5] Efros A. L., Fizika i geometriya besporyadka, Nauka, M., 1982 | MR

[6] Kargin V. A., Struktura i mekhanicheskie svoistva polimerov, Nauka, M., 1979

[7] John F., Studies and essays, Presented to R. Courant on his 60-th birthday, N.-Y., 1948, 187–204 | MR | Zbl

[8] Molchanov S. A., Stepanov A. K., TMF, 55:3 (1983), 419–430 | MR

[9] Rademakher G., Teplits O., Chisla i figury. Opyty matematicheskogo myshleniya, Nauka, M., 1966 | MR

[10] Newman C. H., Schulman L. S., J. Stat. Phys., 26:3 (1981), 613–628 | DOI | MR | Zbl

[11] Newman C. H., Schulman L. S., J. Phys. A: Math. Gen., 14 (1981), 1735–1743 | DOI | MR