Scattering theory for a three-particle system with two-body interactions periodic in time
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 242-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a three-particle system with two-body interaction potentials periodic in time, a scattering theory that extends Faddeev's three-particle scattering theory to the periodic case is constructed.
@article{TMF_1985_62_2_a6,
     author = {E. L. Korotyaev},
     title = {Scattering theory for a~three-particle system with two-body interactions periodic in time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {242--252},
     year = {1985},
     volume = {62},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a6/}
}
TY  - JOUR
AU  - E. L. Korotyaev
TI  - Scattering theory for a three-particle system with two-body interactions periodic in time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 242
EP  - 252
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a6/
LA  - ru
ID  - TMF_1985_62_2_a6
ER  - 
%0 Journal Article
%A E. L. Korotyaev
%T Scattering theory for a three-particle system with two-body interactions periodic in time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 242-252
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a6/
%G ru
%F TMF_1985_62_2_a6
E. L. Korotyaev. Scattering theory for a three-particle system with two-body interactions periodic in time. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 242-252. http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a6/

[1] Faddeev L. D., Tr. MI AN SSSR, 69, 1963 | MR | Zbl

[2] Zeldovich Ya. B., UFN, 10 (1973), 139–151 | DOI

[3] Schmidt E., Indiana Univ. Math. J., 24 (1975), 925–935 | DOI | MR | Zbl

[4] Howland J., Math. Ann., 207 (1974), 315–335 | DOI | MR | Zbl

[5] Yajima K., J. Math. Soc. Japan, 29 (1977), 729–743 | DOI | MR | Zbl

[6] Kato T., Kuroda S., Rocky Mountain J. Math., 1 (1971), 127–171 | DOI | MR | Zbl

[7] Korotyaev E. L., Matem. sb., 124(166) (1984), 431–446 | MR | Zbl

[8] Yafaev D. R., DAN SSSR, 251:4 (1980), 812–816 | MR | Zbl

[9] Howland J., Indiana Univ. Math. J., 28 (1979), 471–495 | DOI | MR

[10] Yafaev D. R., TMF, 37:1 (1978), 48–57 | MR

[11] Ginibre J., Moulin M., Ann. Inst. H. Poincaré, 21 (1974), 97–145 | MR

[12] Korotyaev E. L., DAN SSSR, 255:4 (1980), 836–839 | MR

[13] Birman M. Sh., Solomyak A. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980, 264 pp. | MR

[14] Hagedorn G., Commun. Math. Phys., 66 (1979), 77–94 | DOI | MR | Zbl

[15] Lavine R., Indiana Univ. Math. J., 21 (1972), 643–656 | DOI | MR | Zbl

[16] Kato T., Math. Ann., 162 (1966), 258–279 | DOI | MR | Zbl

[17] Kuroda S., J. Analyse Math., 20 (1967), 57–117 | DOI | MR | Zbl