Levinson formula for perturbed Hill operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 196-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a one-dimensional perturbed Hill operator $H$ for which the impurity potential has a finite first moment, a “Levinson series” is obtained. This series of relationships generalizes the well-known Levinson formula to the case when there is a periodic potential. The “Levinson series” is an effective tool for investigating the discrete spectrum in gaps (forbidden bands). In particular, it is shown that in the case of a reflectionless impurity potential with finite second moment there are no eigenvalues of the operator $H$ in the distant gaps of the spectrum.
@article{TMF_1985_62_2_a2,
     author = {N. E. Firsova},
     title = {Levinson formula for perturbed {Hill} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {196--209},
     year = {1985},
     volume = {62},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a2/}
}
TY  - JOUR
AU  - N. E. Firsova
TI  - Levinson formula for perturbed Hill operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 196
EP  - 209
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a2/
LA  - ru
ID  - TMF_1985_62_2_a2
ER  - 
%0 Journal Article
%A N. E. Firsova
%T Levinson formula for perturbed Hill operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 196-209
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a2/
%G ru
%F TMF_1985_62_2_a2
N. E. Firsova. Levinson formula for perturbed Hill operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 196-209. http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a2/

[1] Firsova N. E., Zap. nauchn. semin. LOMI, 51, 1975, 183–196 | MR | Zbl

[2] Firsova N. E., Formula sleda dlya vozmuschennogo operatora Shredingera s periodicheskim potentsialom, Diplomn. rabota, LGU, 1971

[3] Firsova N. E., Problemy matem. fiziki (LGU), 1974, no. 7, 162–177 | MR

[4] Firsova N. E., Problemy matem. fiziki (LGU), 1976, no. 8, 158–170 | MR

[5] Birman M. Sh., Matem. sb., 55:2 (1961), 125–174 | MR | Zbl

[6] Rofe-Beketov F. S., DAN SSSR, 156:3 (1964), 515–518 | MR | Zbl

[7] Marchenko V. A., Ostrovskii I. V., Matem. sb., 97:4 (1975), 540–606 | MR | Zbl

[8] Zheludev V. A., Problemy matem. fiziki (LGU), 1970, no. 4, 61–82

[9] Rofe-Beketov F. S., Matem. fizika i funkts. analiz (Kharkov), 1973, no. 19, 158–159 | MR

[10] Firsova N. E., Matem. zametki, 36:5 (1984), 711–724 | MR | Zbl

[11] Firsova N. E., Matem. zametki, 18:6 (1975), 831–843 | MR | Zbl

[12] Newton R. G., J. Math. Phys., 21 (1980), 493 | DOI | MR | Zbl

[13] Newton R. G., Inverse scattering by a local impurity in a periodic potential in one dimension, Preprint IN 47405, Physics Department, Indiana University Bloomington, 1982 | MR

[14] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, t. 2, IL, M., 1961, 555 | MR | Zbl

[15] Firsova N. E., Vestn. LGU, ser. fiz., 1979, no. 10/2, 13–18 | MR