Model description of particle collisions in one-component systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 291-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Linearized model collision operators that correctly describe the relaxation of the first 13 hydrodynamic moments in single-component systems are derived. For particles with Coulomb interaction potential, the calculations are made in the second Chapman–Enskog approximation. An expression for the intensity of the Langevin source in the kinetic equation is obtained in the same approximation. The Landau–Lifshitz formula is generalized to non-Markov processes. A new form of model collision operator for the particles of a Boltzmann gas of hard spheres is proposed.
@article{TMF_1985_62_2_a10,
     author = {V. V. Belyi and I. V. Paiva-Veretennikova},
     title = {Model description of particle collisions in one-component systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--303},
     year = {1985},
     volume = {62},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a10/}
}
TY  - JOUR
AU  - V. V. Belyi
AU  - I. V. Paiva-Veretennikova
TI  - Model description of particle collisions in one-component systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 291
EP  - 303
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a10/
LA  - ru
ID  - TMF_1985_62_2_a10
ER  - 
%0 Journal Article
%A V. V. Belyi
%A I. V. Paiva-Veretennikova
%T Model description of particle collisions in one-component systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 291-303
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a10/
%G ru
%F TMF_1985_62_2_a10
V. V. Belyi; I. V. Paiva-Veretennikova. Model description of particle collisions in one-component systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 291-303. http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a10/

[1] Bogolyubov N. N., EChAYa, 9:4 (1978), 501–579 | MR

[2] Bhatnagar P. L., Gross E. P., Krook M., Phys. Rev., 94:3 (1954), 511–525 | DOI | Zbl

[3] Kadomtsov B. B., ZhETF, 32:4 (1957), 943–944

[4] Gantsevich S. V., Gurevich V. L., Katilius R., Rivista del Nouva Cim., 2:5 (1979), 1–87 | DOI | MR

[5] Klimontovich Yu. L., Kineticheskaya teoriya neidealnogo gaza i neidealnoi plazmy, Nauka, M., 1975 | MR

[6] Landau L. D., Lifshits E. M., ZhETF, 32:3 (1957), 618–620

[7] Sirovich L., Phys. Fluids, 9:12 (1966), 2323–2326 | DOI | Zbl

[8] Mc. Cormack F. J., Phys. Fluids, 16:12 (1973), 2095–2105 | DOI

[9] Grad H., Phys. Fluids, 6:2 (1963), 147–181 | DOI | MR | Zbl

[10] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976

[11] Waldmann L., Handbuch der Physik, Bd. 12, Springer, Berlin, 1956, 295. | MR

[12] Burnett D., Proc. London Math. Soc., 39 (1935), 385 | DOI

[13] Wang Chang C. S., Uhlenbeck G. E., On the propagation of sound in monoatomic gases, Univ. of Michigan Eng. Res. Ins. Report, 1952

[14] Vigner E., Teoriya grupp, IL, M., 1961

[15] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, Mir, M., 1978 | MR

[16] Rosmus W., Turski L. A., Phys. Lett., A71, 344–346

[17] Zommerfeld A., Termodinamika i statisticheskaya fizika, IL, M., 1955