Relativistic Hamiltonian with square root in the path integral formalism
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 186-195
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Quantization of the relativistic Hamiltonian
$H=\sqrt{c^2({\mathbf p}-{\mathbf A})^2+{(mc^2+V)}^2}+A_0$ is discussed. A new method is proposed for approximations of the corresponding path
integral. It is shown that calculation of this integral does not give the Green's function
of the Klein–Gordon equation but leads to the propagator of a scalar field in the twocomponent
Feshbach–Villars formalism. The difficulties in calculating path integrals
in the presence of nontrivial external fields are discussed.
			
            
            
            
          
        
      @article{TMF_1985_62_2_a1,
     author = {P. P. Fiziev},
     title = {Relativistic {Hamiltonian} with square root in the path integral formalism},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {186--195},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a1/}
}
                      
                      
                    P. P. Fiziev. Relativistic Hamiltonian with square root in the path integral formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 186-195. http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a1/
