Relativistic Hamiltonian with square root in the path integral formalism
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 186-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantization of the relativistic Hamiltonian $H=\sqrt{c^2({\mathbf p}-{\mathbf A})^2+{(mc^2+V)}^2}+A_0$ is discussed. A new method is proposed for approximations of the corresponding path integral. It is shown that calculation of this integral does not give the Green's function of the Klein–Gordon equation but leads to the propagator of a scalar field in the twocomponent Feshbach–Villars formalism. The difficulties in calculating path integrals in the presence of nontrivial external fields are discussed.
@article{TMF_1985_62_2_a1,
     author = {P. P. Fiziev},
     title = {Relativistic {Hamiltonian} with square root in the path integral formalism},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {186--195},
     year = {1985},
     volume = {62},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a1/}
}
TY  - JOUR
AU  - P. P. Fiziev
TI  - Relativistic Hamiltonian with square root in the path integral formalism
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 186
EP  - 195
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a1/
LA  - ru
ID  - TMF_1985_62_2_a1
ER  - 
%0 Journal Article
%A P. P. Fiziev
%T Relativistic Hamiltonian with square root in the path integral formalism
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 186-195
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a1/
%G ru
%F TMF_1985_62_2_a1
P. P. Fiziev. Relativistic Hamiltonian with square root in the path integral formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 2, pp. 186-195. http://geodesic.mathdoc.fr/item/TMF_1985_62_2_a1/

[1] Tepper L. Gill, Preprint Fermilab Pub 82/60 thy, 1982

[2] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR

[3] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl

[4] Feshbach H., Villars F., Rev. Mod. Phys., 30 (1958), 24 | DOI | MR | Zbl

[5] Dirak P. A. M., Lektsii po kvantovoi mekhanike, Fizmatgiz, M., 1960

[6] Berken D., Drell S., Relyativistskaya kvantovaya teoriya, t. I, Nauka, M., 1978 | MR

[7] Feynman R., Phys. Rev., 80 (1950), 440 ; 84 (1951), 108 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Faddeev L. D., Popov V. N., Phys. Lett., 25B (1967), 29 | DOI

[9] Faddeev L. D., TMF, 1:1 (1969), 3–18 | MR | Zbl

[10] Popov V. N., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1967 | MR

[11] Morette C., Phys. Rev., 81 (1951), 848 | DOI | MR | Zbl

[12] Bardacki K. Samuel, Phys. Rev., D18 (1978), 2

[13] Blokhintsev D. I., Barbashov B. M., UFN, 106 (1972), 593 | DOI

[14] Krausz F., Preprint Harvard Univ. HUTP 80-A-003, 1980

[15] Mizrahi M., J. Math. Phys., 16 (1975), 2201 | DOI | MR

[16] Goddard P., Goldstone J., Rebli C., Thorn B., Nucl. Phys., B56 (1973), 109 | DOI

[17] Bogolyubov P. N., EChAYa, 3 (1972), 144

[18] Kokkede Ya., Teoriya kvarkov, Mir, M., 1975

[19] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1975 | MR | Zbl

[20] Zulanke R., Vintgen D., Differentsialnaya geometriya i rassloeniya, Mir, M., 1975

[21] Sokolov A. A., Ternov I. M., Relyativistskii elektron, Nauka, M., 1974

[22] Berezin F. A., TMF, 6:2 (1971), 194–212 ; УФН, 132 (1980), 497 | MR | Zbl | DOI | MR

[23] Fiziev P. P., Bulg. Jour. Phys., 10 (1983), 27 | MR | Zbl

[24] Fiziev P. P., Soobschenie OIYaI R2-81-742, OIYaI, Dubna, 1981

[25] Buslaev V. S., Variatsionnoe ischislenie, LGU, L., 1980 | MR

[26] Fiziev P. P., Soobschenie OIYaI R2-81-52, OIYaI, Dubna, 1981

[27] Fiziev P. P., Preprint OIYaI R2-83-580, OIYaI, Dubna, 1983 | MR

[28] Lich Dzh. U., Klassicheskaya mekhanika, IL, M., 1961

[29] Kostant B., Lect. in Math. Ann. and Appl., III, Springer, N. Y., 1970

[30] Simms D. J., Woodhouse N. M. J., Lect. Mod. Math. Phys., 53, Springer, N. Y., 1976 | MR | Zbl