Many-loop calculations: The uniqueness method and functional equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 127-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the calculation of many-loop Feynman integrals – the uniqueness method – functional equations are obtained for the coefficient functions of the diagrams. Solution of a functional equation leads to calculation of an $N$-shaped diagram, the last of the 5-loop diagrams of the $\varphi^4$ theory. The obtained result makes it possible to extend by an order the tables constructed previously for the calculation of many-loop integrals.
@article{TMF_1985_62_1_a9,
     author = {D. I. Kazakov},
     title = {Many-loop calculations: {The} uniqueness method and functional equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {127--135},
     year = {1985},
     volume = {62},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a9/}
}
TY  - JOUR
AU  - D. I. Kazakov
TI  - Many-loop calculations: The uniqueness method and functional equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 127
EP  - 135
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a9/
LA  - ru
ID  - TMF_1985_62_1_a9
ER  - 
%0 Journal Article
%A D. I. Kazakov
%T Many-loop calculations: The uniqueness method and functional equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 127-135
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a9/
%G ru
%F TMF_1985_62_1_a9
D. I. Kazakov. Many-loop calculations: The uniqueness method and functional equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 127-135. http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a9/

[1] Kazakov D. I., TMF, 58:3 (1984), 343–353 | MR

[2] Vasilev A. N., Pismak Yu. M., Khonkonen Yu. R., TMF, 47:3 (1981), 291–306

[3] Chetyrkin K. G., Kataev A. L., Tkachov F. V., Nucl. Phys., B174:2/3 (1980), 345–377 | DOI | MR

[4] Speer E., Ann. Inst. H. Poincare, 23 (1975), 1–21 ; Смирнов В. А., ТМФ, 44:3 (1980), 307–320 | MR | MR

[5] Novozhilov Yu. V., Vvedenie v teoriyu elementarnykh chastits, Nauka, M., 1972 | MR | Zbl

[6] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR

[7] Chetyrkin K. G., Gorishny S. G., Larin S. A., Tkachov F. V., Phys. Lett., 132B:6 (1983), 351–356 | DOI | MR