Integral equations for Coulomb scattering wave functions and Coulomb asymptotic states
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 105-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The connection between the homogeneous and inhomogeneous equations for the Coulomb scattering wave function of two particles is investigated. It is shown that the form of the equation depends on the method used to regularize the divergent integrals in the homogeneous part of the equation. This result is a generalization of the result obtained by Van Iiaeringen for orbital angular momentum $l=0$. It is also shown to be helpful to introduce a Coulomb asymptotic state in the momentum representation; this is the inhomogeneous part of the equation and contains all the principal information about the forward scattering of charged particles. Therefore, the Coulomb asymptotic states can be used to find the behavior of the reaction amplitudes of charged particles near singularities in $\cos\theta$, where $\theta$ is the scattering angle.
@article{TMF_1985_62_1_a7,
     author = {A. M. Mukhamedzhanov},
     title = {Integral equations for {Coulomb} scattering wave functions and {Coulomb} asymptotic states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {105--116},
     year = {1985},
     volume = {62},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a7/}
}
TY  - JOUR
AU  - A. M. Mukhamedzhanov
TI  - Integral equations for Coulomb scattering wave functions and Coulomb asymptotic states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 105
EP  - 116
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a7/
LA  - ru
ID  - TMF_1985_62_1_a7
ER  - 
%0 Journal Article
%A A. M. Mukhamedzhanov
%T Integral equations for Coulomb scattering wave functions and Coulomb asymptotic states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 105-116
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a7/
%G ru
%F TMF_1985_62_1_a7
A. M. Mukhamedzhanov. Integral equations for Coulomb scattering wave functions and Coulomb asymptotic states. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 105-116. http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a7/

[1] West G. B., J. Math. Phys., 8:4 (1967), 942–953 | DOI | MR

[2] Van Haeringen H., J. Math. Phys., 17:6 (1976), 995–1000 | DOI | MR

[3] Danford N., Shvarts Dzh., Lineinye operatory, t. I, IL, M., 1962

[4] Guth E., Mullin C. J., Phys. Rev., 83:3 (1951), 667–669 | DOI | MR

[5] Van Haeringen H., Nuovo Cim., 34B:1 (1976), 53–75 | MR

[6] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. I, Nauka, M., 1973, 294 pp. | MR

[7] Van Haeringen H., Coulomb potential in quantum mechanics and related topics, Delft Univ. of Technology (Holland), 1982, 220 pp.

[8] Popov V. S., ZhETF, 47:6 (1964), 2229–2246 | Zbl

[9] Dolinskii E. I., Mukhamedzhanov A. M., YaF, 3:2 (1966), 252–262

[10] Shapiro I. S., Teoriya pryamykh yadernykh reaktsii, Atomizdat, M., 1963, 91 pp.

[11] Dolinsky E. I., Dzhamalov P. O., Mukhamedzhanov A. M., Nucl. Phys., A202:1 (1973), 97–122 | DOI

[12] Merkurev S. P., TMF, 32:2 (1977), 187–207 | MR

[13] Komarov V. V., Popova A. M., Shablov V. L., EChAYa, 14:2 (1983), 329–372 | MR

[14] Avakov G. V., Ashurov A. R., Levin V. G., Mukhamedzhanov A. M., J. Phys. A, 17:5 (1984), 1131–1141 | DOI | MR