Continuous models of percolation theory.~I
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 76-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Percolation models in which defect centers are distributed randomly in space in accordance with Poisson's law and the shape of each defect is also random are considered. Coincidence of two critical points is proved. One of these corresponds to the time when the mean number of defects connected to a given defect becomes infinite. The other corresponds to the existence of percolation in an arbitrarily large region of space.
@article{TMF_1985_62_1_a4,
     author = {S. A. Zuev and A. F. Sidorenko},
     title = {Continuous models of percolation {theory.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {76--86},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a4/}
}
TY  - JOUR
AU  - S. A. Zuev
AU  - A. F. Sidorenko
TI  - Continuous models of percolation theory.~I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 76
EP  - 86
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a4/
LA  - ru
ID  - TMF_1985_62_1_a4
ER  - 
%0 Journal Article
%A S. A. Zuev
%A A. F. Sidorenko
%T Continuous models of percolation theory.~I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 76-86
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a4/
%G ru
%F TMF_1985_62_1_a4
S. A. Zuev; A. F. Sidorenko. Continuous models of percolation theory.~I. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 76-86. http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a4/