Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 144-152
Cet article a éte moissonné depuis la source Math-Net.Ru
In the nonlinear $\sigma$ model, conserved tensor currents associated with the presence of isometric, homothetic, and affine motions in the space of values of the chiral field $V^N$ are constructed. New classes of exact solutions in the $SO(3)$- and $SO(5)$-invariant $\sigma$ models are obtained using the connection between the groups of isometric and homothetic motions of space-time and the isometric motions in $V^N$. Some methods for obtaining exact solutions in the four-dimensional $\sigma$ model with nontrivial topological charge are considered.
@article{TMF_1985_62_1_a11,
author = {G. G. Ivanov},
title = {Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {144--152},
year = {1985},
volume = {62},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a11/}
}
TY - JOUR AU - G. G. Ivanov TI - Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1985 SP - 144 EP - 152 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a11/ LA - ru ID - TMF_1985_62_1_a11 ER -
%0 Journal Article %A G. G. Ivanov %T Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model %J Teoretičeskaâ i matematičeskaâ fizika %D 1985 %P 144-152 %V 62 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a11/ %G ru %F TMF_1985_62_1_a11
G. G. Ivanov. Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 144-152. http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a11/
[1] Ivanov G. G., TMF, 57:1 (1983), 45–54 | MR
[2] Borchers H. J., Garber W. D., Commun. Math. Phys., 72 (1980), 77–102 | DOI | MR | Zbl
[3] De Alfaro V., Fubini S., Furlan G., Nuovo Cim., 50A:4 (1979), 523–554 | DOI
[4] Ghika G., Visinescu M., Nuovo Cim., 59B:1 (1980), 59–74 | DOI | MR
[5] Omero C., Percacci R., Nucl. Phys., B165 (1980), 351–364 | DOI | MR
[6] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. I, Nauka, M., 1981, 341 pp. | MR
[7] Perelomov A. M., UFN, 134:4 (1981), 577–609 | DOI | MR
[8] Gross D. J., Nucl. Phys., B132 (1978), 439–456 | DOI | MR
[9] Barbashov B. M., Nesterenko V. V., Fortschr. Phys., 28 (1980), 427–464 | DOI | MR