Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 144-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the nonlinear $\sigma$ model, conserved tensor currents associated with the presence of isometric, homothetic, and affine motions in the space of values of the chiral field $V^N$ are constructed. New classes of exact solutions in the $SO(3)$- and $SO(5)$-invariant $\sigma$ models are obtained using the connection between the groups of isometric and homothetic motions of space-time and the isometric motions in $V^N$. Some methods for obtaining exact solutions in the four-dimensional $\sigma$ model with nontrivial topological charge are considered.
@article{TMF_1985_62_1_a11,
     author = {G. G. Ivanov},
     title = {Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {144--152},
     year = {1985},
     volume = {62},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a11/}
}
TY  - JOUR
AU  - G. G. Ivanov
TI  - Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 144
EP  - 152
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a11/
LA  - ru
ID  - TMF_1985_62_1_a11
ER  - 
%0 Journal Article
%A G. G. Ivanov
%T Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 144-152
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a11/
%G ru
%F TMF_1985_62_1_a11
G. G. Ivanov. Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 144-152. http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a11/

[1] Ivanov G. G., TMF, 57:1 (1983), 45–54 | MR

[2] Borchers H. J., Garber W. D., Commun. Math. Phys., 72 (1980), 77–102 | DOI | MR | Zbl

[3] De Alfaro V., Fubini S., Furlan G., Nuovo Cim., 50A:4 (1979), 523–554 | DOI

[4] Ghika G., Visinescu M., Nuovo Cim., 59B:1 (1980), 59–74 | DOI | MR

[5] Omero C., Percacci R., Nucl. Phys., B165 (1980), 351–364 | DOI | MR

[6] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. I, Nauka, M., 1981, 341 pp. | MR

[7] Perelomov A. M., UFN, 134:4 (1981), 577–609 | DOI | MR

[8] Gross D. J., Nucl. Phys., B132 (1978), 439–456 | DOI | MR

[9] Barbashov B. M., Nesterenko V. V., Fortschr. Phys., 28 (1980), 427–464 | DOI | MR