Local and nonlocal currents for nonlinear equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 3-29

Voir la notice de l'article provenant de la source Math-Net.Ru

A general method is suggested for constructing conserving currents for a wide class of (many-dimensional) nonlinear equations. For nonlinear differential equations which can be presented as conditions of solvability of some over-determined linear system with a parameter (in particular, for the equations integrable by means of the inverse scattering transform method), the procedure of the explicit evaluation of conserving currents is proposed.
@article{TMF_1985_62_1_a0,
     author = {V. S. Vladimirov and I. V. Volovich},
     title = {Local and nonlocal currents for nonlinear equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--29},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a0/}
}
TY  - JOUR
AU  - V. S. Vladimirov
AU  - I. V. Volovich
TI  - Local and nonlocal currents for nonlinear equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 3
EP  - 29
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a0/
LA  - ru
ID  - TMF_1985_62_1_a0
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%A I. V. Volovich
%T Local and nonlocal currents for nonlinear equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 3-29
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a0/
%G ru
%F TMF_1985_62_1_a0
V. S. Vladimirov; I. V. Volovich. Local and nonlocal currents for nonlinear equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 3-29. http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a0/