Local and nonlocal currents for nonlinear equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 3-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general method is suggested for constructing conserving currents for a wide class of (many-dimensional) nonlinear equations. For nonlinear differential equations which can be presented as conditions of solvability of some over-determined linear system with a parameter (in particular, for the equations integrable by means of the inverse scattering transform method), the procedure of the explicit evaluation of conserving currents is proposed.
@article{TMF_1985_62_1_a0,
     author = {V. S. Vladimirov and I. V. Volovich},
     title = {Local and nonlocal currents for nonlinear equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--29},
     year = {1985},
     volume = {62},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a0/}
}
TY  - JOUR
AU  - V. S. Vladimirov
AU  - I. V. Volovich
TI  - Local and nonlocal currents for nonlinear equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 3
EP  - 29
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a0/
LA  - ru
ID  - TMF_1985_62_1_a0
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%A I. V. Volovich
%T Local and nonlocal currents for nonlinear equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 3-29
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a0/
%G ru
%F TMF_1985_62_1_a0
V. S. Vladimirov; I. V. Volovich. Local and nonlocal currents for nonlinear equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 3-29. http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a0/

[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[2] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[3] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[4] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[5] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[6] Kruskal M., Lect. Notes in Physics, 38, 1975, 310–354 | DOI | MR | Zbl

[7] Gardner C. S., Green J. M., Kruskal M. D., Miura M. M., Phys. Rev. Lett., 15 (1967), 1095–1097 | DOI

[8] Bogolyubov N. N., K voprosu o modelnom gamiltoniane v teorii sverkhprovodimosti. Izbrannye trudy, t. 3, Naukova dumka, Kiev, 1971, 110–173 | MR

[9] Luscher M., Pohlmeyer K., Nucl. Phys., B137:1 (1978), 46–54 | DOI | MR

[10] Luscher M., Nucl. Phys., B135:1 (1978), 1–19 | DOI | MR

[11] Brezin E., Itzykson C., Zinn-Justin J., Zuber J.-B., Phys. Lett., 82B:3–4 (1979), 442–444 | DOI

[12] Vladimirov V. S., Zharinov V. V., Diff. urav., XVI:5 (1980), 845–867 | MR | Zbl

[13] Faddeev L. D., Integrable models in $1+1$ dimensional quantum field theory, Preprint S.Ph.T./82/79, CEN-SACLAY, France, 1982 | MR

[14] Vladimirov V. S., Volovich I. V., DAN SSSR, 279:4 (1984), 843–847 ; 280:2 (1985) | MR | Zbl | Zbl

[15] Vladimirov V. S., Volovich I. V., TMF, 59:1 (1984), 3–27 ; 60:2, 169–198 | MR | Zbl | MR | Zbl

[16] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[17] Chodos A., Phys. Rev., D20:4 (1979), 915–920 | MR

[18] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 2, Mir, M., 1978 | MR

[19] Lakshmanan M., Ruijgrok Th. W., Thompson C. J., Physica, A84:2 (1976), 577–590 | DOI | MR

[20] Novikov S. P., Funkts. analiz i ego prilozh., 8:3 (1974), 54–66 | MR | Zbl

[21] Zakharov V. E., Shabat A. B., Funkts. analiz i ego prilozh., 13:3 (1979), 13–22 | MR | Zbl

[22] Pohlmeyer K., Commun. Math. Phys., 46:2 (1976), 207–218 | DOI | MR

[23] Zakharov V. E., Mikhailov A. V., ZhETF, 74:6 (1978), 1953–1974 | MR

[24] Dolan L., Kac-Moody algebras and exact solvability in Hadron physics, Preprint RU 83/B/63, The Rockefeller University, New-York, 1983 | MR

[25] Takhtajan L. A., Phys. Lett., 64A:2 (1977), 235–237 | DOI | MR

[26] Eichenherr H., Infinite dimensional symmetry algebras in integrable systems, Preprint PAR-LPTHE 82/16, Paris, 1982 | MR | Zbl

[27] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[28] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965 | MR

[29] Grimm M., Sohnius M., Wess J., Nucl. Phys., B133:2 (1978), 275–284 | DOI | MR

[30] Volovich I. V., TMF, 57:3 (1983), 469–473 | MR

[31] Devchand C., Nucl. Phys., B238:2 (1984), 331–345 | MR

[32] Arefeva I. Ya., Volovich I. V., Zap. nauchn. semin. LOMI, 133, 1984, 6–15 | MR

[33] Volovich I. V., Kvaziklassicheskoe razlozhenie v konstruktivnoi kvantovoi teorii polya, Avtoref. dis. na soiskanie uch. st. kand. fiz.-matem. n., MI AN SSSR, M., 1979

[34] Kulish P. P., TMF, 26:2 (1976), 198–205 | MR

[35] Dodd R. K., Bullough R. K., Proc. Roy. Soc. Lond., A352:2 (1977), 481–494 | DOI | MR

[36] Zhiber A. V., Shabat A. B., DAN SSSR, 247:5 (1979), 1103–1107 | MR