Local and nonlocal currents for nonlinear equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 3-29
Voir la notice de l'article provenant de la source Math-Net.Ru
A general method is suggested for constructing conserving currents for a wide
class of (many-dimensional) nonlinear equations. For nonlinear differential equations
which can be presented as conditions of solvability of some over-determined linear
system with a parameter (in particular, for the equations integrable by means of the
inverse scattering transform method), the procedure of the explicit evaluation of
conserving currents is proposed.
@article{TMF_1985_62_1_a0,
author = {V. S. Vladimirov and I. V. Volovich},
title = {Local and nonlocal currents for nonlinear equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--29},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a0/}
}
V. S. Vladimirov; I. V. Volovich. Local and nonlocal currents for nonlinear equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 1, pp. 3-29. http://geodesic.mathdoc.fr/item/TMF_1985_62_1_a0/