Dynamical variable and chiral properties of the vacuum in the Schwinger model
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 419-430 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Schwinger model for a system in a box is studied in the Hamiltonian formalism in the Coulomb and axial gauges. It is shown that the vacuum degeneracy in the model is a gauge artefact, and gauge-noninvariant quantities whose conservation leads to the degeneracy are specified. It is established that the dynamical variable in the model is the gauge-invariant axial charge. In the case when the vacuum is degenerate, the ground state contains a zero-mode condensate. In the limit of an infinite box, the zero mode leaves the vacuum but remains in the Hamiltonian in a separated form.
@article{TMF_1984_61_3_a9,
     author = {A. V. Kiselev},
     title = {Dynamical variable and chiral properties of the vacuum in the {Schwinger} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {419--430},
     year = {1984},
     volume = {61},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a9/}
}
TY  - JOUR
AU  - A. V. Kiselev
TI  - Dynamical variable and chiral properties of the vacuum in the Schwinger model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 419
EP  - 430
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a9/
LA  - ru
ID  - TMF_1984_61_3_a9
ER  - 
%0 Journal Article
%A A. V. Kiselev
%T Dynamical variable and chiral properties of the vacuum in the Schwinger model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 419-430
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a9/
%G ru
%F TMF_1984_61_3_a9
A. V. Kiselev. Dynamical variable and chiral properties of the vacuum in the Schwinger model. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 419-430. http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a9/

[1] Schwinger J., Phys. Rev., 128:5 (1962), 2425–2429 | DOI | MR | Zbl

[2] Lowenstein L., Swieca J. A., Ann. of Phys., 68:1 (1971), 172–195 ; Casher A., Kogut J., Susskind L., Phys. Rev., D10:2 (1974), 732–745 ; Красников Н. В., Матвеев В. А., Рубаков В. А., Тавхелидзе А. Н., Токарев В. Ф., ТМФ, 45:3 (1980), 313–328 | DOI | MR | MR | MR

[3] Danilov G. S., Dyatlov I. T., Petrov V. Yu., ZhETF, 79:6(12) (1980), 2017–2043 ; Матер. XVIII зимней школы ЛИЯФ, ЛИЯФ, Л., 1983, 3–52 | MR

[4] Nakawaki Y., Progr. Theor. Phys., 69:1 (1983), 235–257 | DOI | MR

[5] Tyburski L., Phys. Lett., 99B:3 (1981), 218–220 | DOI | MR

[6] Halpern M. B., Serjanovio P., Phys. Rev., D15:12 (1977), 3629–3640 ; Pak N. K., Nuovo Cim., 46A:3 (1978), 440–454 | MR | DOI | MR

[7] Schwinger J., Phys. Rev. Lett., 3:6 (1959), 296–297 | DOI

[8] Mattis D. C., Lieb E. H., J. Math. Phys., 6:2 (1965), 304–312 | DOI | MR

[9] Uhlenbrock D., Commun. Math. Phys., 4:1 (1967), 64–76 | DOI | MR | Zbl

[10] Nakawaki Y., Progr. Theor. Phys., 70:4 (1983), 1105–1123 | DOI | MR

[11] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978, 79–85 | MR