Structure functions of deep inelastic scattering and $e^+e^-$ annihilation at small x in QCD
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 408-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the behavior of the structure functions of deep inelastic scattering and $e^+e^-$-annihilation at small x in different asymptotic regimes. It is shown that when allowance is made for only the leading logarithms the Gribov–Lipatov relation between these functions holds in the Bjorkea regime $(Q^2\rightarrow\infty, x\rightarrow 0)$ and is violated in the Regge regime $(Q^2=\mathrm{const}, x\rightarrow 0)$. When the nonleading contributions are taken into account it also ceases to hold in the Bjorken regime.
@article{TMF_1984_61_3_a8,
     author = {G. M. Zinovjev and O. P. Pavlenko and A. M. Snigirev and V. P. Shelest},
     title = {Structure functions of deep inelastic scattering and $e^+e^-$ annihilation at small x in {QCD}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {408--418},
     year = {1984},
     volume = {61},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a8/}
}
TY  - JOUR
AU  - G. M. Zinovjev
AU  - O. P. Pavlenko
AU  - A. M. Snigirev
AU  - V. P. Shelest
TI  - Structure functions of deep inelastic scattering and $e^+e^-$ annihilation at small x in QCD
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 408
EP  - 418
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a8/
LA  - ru
ID  - TMF_1984_61_3_a8
ER  - 
%0 Journal Article
%A G. M. Zinovjev
%A O. P. Pavlenko
%A A. M. Snigirev
%A V. P. Shelest
%T Structure functions of deep inelastic scattering and $e^+e^-$ annihilation at small x in QCD
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 408-418
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a8/
%G ru
%F TMF_1984_61_3_a8
G. M. Zinovjev; O. P. Pavlenko; A. M. Snigirev; V. P. Shelest. Structure functions of deep inelastic scattering and $e^+e^-$ annihilation at small x in QCD. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 408-418. http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a8/

[1] Dokshitzer Yu. L., Dyakonov D. I., Troyan S. I., Phys. Rep., 58:5 (1980), 269–395 ; Mueller A. H., Phys. Rep., 73:4 (1981), 237–368 | DOI | DOI | MR

[2] Dokshitser Yu. L., ZhETF, 73:4 (1977), 1216–1239

[3] Gribov L. V., Levin E. M., Ryskin M. G., ZhETF, 80:6 (1981), 2132–2149

[4] Bartels J., Loewe M., Z. Phys., C12:3 (1982), 263–268 | MR

[5] Loewe M., Improved description of the small-$x$ limit of deep inelastic scattering, Preprint DESY 82-043, DESY, Hamburg, 1982

[6] Mueller A. H., Nucl. Phys., B213:1 (1983), 85–108 | DOI

[7] Pavlenko O. P., Snigirev A. M., Zinovjev G. M., Phys. Lett., 126B:3/4 (1983), 267–270 | DOI

[8] Lipatov L. N., YaF, 20:1 (1974), 181–198

[9] Gribov V. N., Lipatov L. N., YaF, 15:6 (1972), 1218–1236

[10] Kuraev E. A., Lipatov L. N., Fadin V. S., ZhETF, 72:2 (1977), 377–389 | MR

[11] Sudakov V. V., ZhETF, 30:1 (1956), 87–101 | MR

[12] Ryskin M. G., Dokshitser Yu. L., Pisma v ZhETF, 33:5 (1981), 288–291

[13] Gribov L. V., Levin E. M., Ryskin M. G., Phys. Rep., 100:1 (1983), 1–150 | DOI | MR

[14] Curci G., Furmanski W., Petronzio R., Nucl. Phys., B175:1 (1980), 27–92 | DOI