System of exact equations for the mass operator of quasiparticles interacting with phonons
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 400-407 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A diagram technique is used to construct a system of exact equations for the total mass operator of quasiparticles interacting with phonons. Its solution is an infinite integral continued fraction with exactly determined n-th term. For the example of an exactly solvable problem, the spectrum of the ground state and all bound states of a quasiparticle with phonons is found. The part played by many-phonon processes in its formation is investigated for different magnitudes of the coupling constant.
@article{TMF_1984_61_3_a7,
     author = {N. V. Tkach},
     title = {System of exact equations for the mass operator of quasiparticles interacting with phonons},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {400--407},
     year = {1984},
     volume = {61},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a7/}
}
TY  - JOUR
AU  - N. V. Tkach
TI  - System of exact equations for the mass operator of quasiparticles interacting with phonons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 400
EP  - 407
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a7/
LA  - ru
ID  - TMF_1984_61_3_a7
ER  - 
%0 Journal Article
%A N. V. Tkach
%T System of exact equations for the mass operator of quasiparticles interacting with phonons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 400-407
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a7/
%G ru
%F TMF_1984_61_3_a7
N. V. Tkach. System of exact equations for the mass operator of quasiparticles interacting with phonons. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 400-407. http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a7/

[1] Bogolyubov N. N. (ml.), Sadovnikov B. I., Nekotorye voprosy statisticheskoi mekhaniki, Vysshaya shkola, M., 1975, 352 pp. | MR

[2] Zubarev D. N., UFN, 71:1 (1960), 71–116 | DOI | MR

[3] Lubchenko A. F., Nitsovich V. M., Tkach N. V., TMF, 21 (1974), 415–423

[4] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E., Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962, 443 pp. | MR | Zbl

[5] Mori H., Progr. Theor. Phys., 34 (1965), 399–416 | DOI | MR

[6] Plakida N. N., Statisticheskaya fizika i kvantovaya teoriya polya, Nauka, M., 1973, 205–240 | MR

[7] Tserkovnikov Yu. A., TMF, 49:2 (1981), 219–233 | MR

[8] Davydov A. S., Teoriya tverdogo tela, Nauka, M., 1976, 639 pp. | Zbl

[9] Pines D., Polarons and Excitons, Plenum Press, N. Y., 1962, 155–171

[10] Polyarony, Nauka, M., 1975, 423 pp.

[11] Matematicheskii analiz, Fizmatgiz, M., 1961, 439 pp.