Renormalization-group equations in curved space-time
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 393-399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Renormalization-group equations are given a general formulation in curved space-time. The general form of the equation for the effective charge corresponding to the parameter of nonminimal coupling of a scalar field and the gravitational field is established in the one-loop approximation. It is shown that in the limit of a strong gravitational field the asymptotically free theories can be asymptotically conformally invariant.
@article{TMF_1984_61_3_a6,
     author = {I. L. Buchbinder},
     title = {Renormalization-group equations in curved space-time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {393--399},
     year = {1984},
     volume = {61},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a6/}
}
TY  - JOUR
AU  - I. L. Buchbinder
TI  - Renormalization-group equations in curved space-time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 393
EP  - 399
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a6/
LA  - ru
ID  - TMF_1984_61_3_a6
ER  - 
%0 Journal Article
%A I. L. Buchbinder
%T Renormalization-group equations in curved space-time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 393-399
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a6/
%G ru
%F TMF_1984_61_3_a6
I. L. Buchbinder. Renormalization-group equations in curved space-time. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 393-399. http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a6/

[1] De Witt B. S., Phys. Rep., 19 (1975), 295–357 | DOI

[2] Parker L., Proc. NATO Adv. Study Inst. Gravit., 1978

[3] Grib A. A., Mamaev S. G., Mostepanenko V. M., Kvantovye effekty v intensivnykh vneshnikh polyakh, Atomizdat, M., 1983, 294 pp.

[4] Buchbinder I. L., Fradkin E. S., Giyman D. M., Fortschr. Phys., 29 (1981), 187–218 | DOI | MR

[5] Nelson B. S., Panangaden P., Phys. Rev., 25D:4 (1982), 1019–1027

[6] Toms D. J., Phys. Rev., 26D:10 (1982), 2713–2729 | MR

[7] Bukhbinder I. L., Odintsov S. D., Izv. VUZov, fizika, 1983, no. 8, 50–55

[8] Toms D. J., Phys. Rev., 27D:8 (1983), 1803–1813 | MR

[9] Toms D. J., Phys. Lett., 126B:1–2 (1983), 37–40 | DOI | MR

[10] Bukhbinder I. L., Odintsov S. D., Izv. VUZov, fizika, 1983, no. 12, 108–109

[11] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976, 479 pp. | MR

[12] Vladimirov A. A., Shirkov D. V., UFN, 129:3 (1979), 407–441 | DOI | MR

[13] Brown L. S., Collins J. C., Ann. Phys., 130 (1980), 215–248 | DOI | MR

[14] Bunch T. S., Parker L., Phys. Rev., 20D:10 (1979), 2499–2510 | MR

[15] Bunch T. S., G. R. G., 13:7 (1981), 711–723 | DOI | MR | Zbl

[16] Bukhbinder I. L., Odintsov S. D., Izv. VUZov, fizika, 1983, no. 4, 46–48

[17] Penrouz R., Gravitatsiya i topologiya, Mir, M., 1966, 152–181

[18] Chernikov N. A., Tagirov E. A., Ann. Inst. H. Poincare, 9:2A (1968), 109–141 | MR | Zbl

[19] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978, 238 pp. | MR

[20] Becchi C., Ruet A., Stora M., Commun. Math. Phys., 42 (1975), 127 | DOI | MR

[21] Tyutin I. V., Preprint FIAN, No 39, FIAN, M., 1975

[22] Chang N. P., Phys. Rev., 10D:8 (1974), 2706–2709

[23] Fradkin E. S., Kalashnikov O. K., J. Phys., 8A:11 (1975), 1814–1818 | MR

[24] Voronov B. L., Tyutin I. V., YaF, 23:3 (1976), 664–675

[25] De Witt B. S., Phys. Rev., 162:5 (1967), 1195–1239 | DOI

[26] Arefeva I. Ya., Slavnov A. A., Faddeev L. D., TMF, 21:3 (1974), 311–321

[27] Fradkin E. S., Vilkovisky G. A., Preprint Inst. Theor. Phys. Univ. Bern, 1976

[28] Barvinsky O. A., Vilkovisky G. A., Nucl. Phys., B191:2 (1982), 237–259 | MR