Lattice sine-Gordon model with local Hamiltonian
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 364-377 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The excitation spectrum in the quantum lattice sine-Gordon model with Hamiltonian describing the interaction of two nearest neighbors on a lattice is obtained. This lattice model is one of the possible regularizations of the quantum field sine-Gordon model that preserve the property of complete integrability. It is shown that in the quantum field model regularized in this manner there are phase transitions at the points $\gamma=\pi n/(n+1)$ ($n$ is an integer), and these are explained by a change in the structure of the vacuum state.
@article{TMF_1984_61_3_a3,
     author = {N. M. Bogolyubov and A. G. Izergin},
     title = {Lattice {sine-Gordon} model with local {Hamiltonian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {364--377},
     year = {1984},
     volume = {61},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a3/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - A. G. Izergin
TI  - Lattice sine-Gordon model with local Hamiltonian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 364
EP  - 377
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a3/
LA  - ru
ID  - TMF_1984_61_3_a3
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A A. G. Izergin
%T Lattice sine-Gordon model with local Hamiltonian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 364-377
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a3/
%G ru
%F TMF_1984_61_3_a3
N. M. Bogolyubov; A. G. Izergin. Lattice sine-Gordon model with local Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 364-377. http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a3/

[1] Bogolyubov N. M., Izergin A. G., TMF, 59:2 (1984), 183–199 | MR

[2] Faddeev L. D., Kvantovye vpolne integriruemye modeli teorii polya, Preprint R-2-79, LOMI AN SSSR, L., 1979

[3] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., TMF, 40:2 (1979), 194–220 | MR

[4] Izergin A. G., Korepin V. E., Vestn. LGU, 1981, no. 22, 84–87 | MR

[5] Izergin A. G., Korepin V. E., Nucl. Phys., B205, FS5:3 (1982), 401–413 | DOI | MR

[6] Bogolyubov N. M., TMF, 51:3 (1982), 344–354 | MR

[7] Tarasov V. O., Takhtadzhyan L. A., Faddeev L. D., TMF, 57:2 (1983), 163–181 | MR

[8] Takahashi M., Suzuki M., Progr. Theor. Phys., 48:6B (1972), 2187–2208 | DOI

[9] Yang C. N., Yang C. P., J. Math. Phys., 10 (1969), 1115–1122 | DOI | MR | Zbl

[10] Faddeev L. D., Korepin V. E., Phys. Rep., 42C:1 (1978), 1–87 | DOI | MR

[11] Korepin V. E., TMF, 41:2 (1979), 169–189 | MR

[12] Ishikawa M., Hida K., Preprint PAC No 05.30, 1984

[13] Korepin V. E., Commun. Math. Phys., 76 (1980), 165–176 | DOI | MR