Methods of Weyl representation of the phase space and canonical transformations.~I
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 347-363
Voir la notice de l'article provenant de la source Math-Net.Ru
The structure of the kernel of a canonical transformation and a
differential equation for the symbol of the intertwining operator
are found. The symbol of a general linear canonical transformation
is constructed in terms of a Cayley transformation of the
symplectic transformation of the phase space. Its singularities
and applications to group theory are studied. The Green's
functions and spectral projectors of arbitrary quadratic systems
are constructed using the classification methods of classical
mechanics.
@article{TMF_1984_61_3_a2,
author = {V. G. Budanov},
title = {Methods of {Weyl} representation of the phase space and canonical {transformations.~I}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {347--363},
publisher = {mathdoc},
volume = {61},
number = {3},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a2/}
}
TY - JOUR AU - V. G. Budanov TI - Methods of Weyl representation of the phase space and canonical transformations.~I JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 347 EP - 363 VL - 61 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a2/ LA - ru ID - TMF_1984_61_3_a2 ER -
V. G. Budanov. Methods of Weyl representation of the phase space and canonical transformations.~I. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 347-363. http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a2/