Alpha representation and spectral properties of multiparton functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 284-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By means of parametric representation for Feynman integrals it is shown that the functions $F(x_1,\ldots,x_k)$ and $\varphi(x_1,\ldots,x_k)$, whose generalized moments are proportional to the reduced matrix elements of the k-particle composite operators, possess the spectral properties needed for their parton interpretation.
@article{TMF_1984_61_2_a9,
     author = {A. V. Radyushkin},
     title = {Alpha representation and spectral properties of multiparton functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {284--292},
     year = {1984},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a9/}
}
TY  - JOUR
AU  - A. V. Radyushkin
TI  - Alpha representation and spectral properties of multiparton functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 284
EP  - 292
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a9/
LA  - ru
ID  - TMF_1984_61_2_a9
ER  - 
%0 Journal Article
%A A. V. Radyushkin
%T Alpha representation and spectral properties of multiparton functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 284-292
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a9/
%G ru
%F TMF_1984_61_2_a9
A. V. Radyushkin. Alpha representation and spectral properties of multiparton functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 284-292. http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a9/

[1] Efremov A. V., Radyushkin A. V., On perturbative QGD of hard and soft processes, Preprint E2-80-521, JINR, Dubna, 1980 | MR

[2] Politzer H. D., Nucl. Phys., B172:2/3 (1980), 349–382 | DOI | MR

[3] Ellis R. K., Furmanski W., Petronzio R., Nucl. Phys., B212:1 (1983), 29–98

[4] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976, 480 pp. | MR

[5] Nakanishi N., Graph Theory and Feynman Integrals, Gordon and Breach, New York–Melbourne–London, 1971, 223 pp. | Zbl

[6] Chisholm J. S. R., Proc. Cambr. Phil. Soc., 48, part 2 (1952), 300–315 | DOI | MR | Zbl

[7] Zavyalov O. I., Perenormirovannye diagrammy Feinmana, Nauka, M., 1979, 66–128 | MR

[8] Vladimirov A. A., TMF, 43:2 (1980), 210–217

[9] Chetyrkin K. G., Tkachov F. V., Nucl. Phys., B192 (1981), 159–204 | DOI

[10] Efremov A. V., Asymptotics of Feynman Graphs. III: Spinor Graphs, Preprint E-2125, JINR, Dubna, 1965

[11] Lam C. S., Lebrun J. P., Nuovo Cim., 59:4 (1969), 358–421