Spontaneous compactification into symmetric spaces with nonsimple holonomy group
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 241-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the compactification of the subspace of the additional dimensions into symmetric spaces with nonsimple holonomy group can be due to the interaction of the gravitational field with gauge fields that transform with respect to one of the invariant subgroups of the holonomy group, i.e., it can be realized by a smaller number of gauge fields than the compactification into symmetric spaces with simple holonomy group.
@article{TMF_1984_61_2_a6,
     author = {D. V. Volkov and D. P. Sorokin and V. I. Tkach},
     title = {Spontaneous compactification into symmetric spaces with nonsimple holonomy group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {241--253},
     year = {1984},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a6/}
}
TY  - JOUR
AU  - D. V. Volkov
AU  - D. P. Sorokin
AU  - V. I. Tkach
TI  - Spontaneous compactification into symmetric spaces with nonsimple holonomy group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 241
EP  - 253
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a6/
LA  - ru
ID  - TMF_1984_61_2_a6
ER  - 
%0 Journal Article
%A D. V. Volkov
%A D. P. Sorokin
%A V. I. Tkach
%T Spontaneous compactification into symmetric spaces with nonsimple holonomy group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 241-253
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a6/
%G ru
%F TMF_1984_61_2_a6
D. V. Volkov; D. P. Sorokin; V. I. Tkach. Spontaneous compactification into symmetric spaces with nonsimple holonomy group. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 241-253. http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a6/

[1] Kaluza T., Sitzber. Preuss. Akad. Wiss. Berlin, Math. Phys. Kl., 1 (1921), 966–972

[2] Cremmer E., Julia B., Scherk J., Phys. Lett. B, 76:4 (1978), 409–412 | DOI

[3] Cremmer E., Julia B., Nucl. Phys. B, 159:1/2 (1979), 141–212 | DOI | MR

[4] Witten E., Nucl. Phys. B, 186:3 (1981), 412–428 | DOI | MR

[5] Volkov D. V., Tkach V. I., Pisma v ZhETF, 32:11 (1980), 681–684

[6] Volkov D. V., Tkach V. I., TMF, 51:2 (1982), 171–177 | MR | Zbl

[7] Randjbar-Daemi S., Percacci R., Phys. Lett. B, 117:1 (1982), 41–44 | DOI | MR

[8] Cremmer E., Scherk J., Nucl. Phys. B, 118:1/2 (1977), 61–75 | DOI | MR

[9] Luciano I. F., Nucl. Phys. B, 135:1 (1978), 111–130 | DOI | MR

[10] Volkov D. V., Sorokin D. P., Tkach V. I., TMF, 56:2 (1983), 171–179 | MR | Zbl

[11] Volkov D. V., Sorokin D. P., Tkach V. I., Pisma v ZhETF, 38:8 (1983) | Zbl

[12] Randjbar-Daemi S., Phys. Lett. B, 122:5–6 (1983), 378–380 | DOI | MR

[13] Kartan E., Geometriya grupp Li i simmetricheskie prostranstva, IL, M., 1949, 364 pp.

[14] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970, 664 pp. | MR | Zbl

[15] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, Chast I, Mir, M., 1980, 456 pp. | MR | Zbl