Oscillating weakly localized solutions of the Korteweg–de Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 199-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical inverse scattering method is adapted to obtain weakly localized solutions of the KdV equation for which the transmission coefficient of the scattering matrix can vanish for a finite set of momenta.
@article{TMF_1984_61_2_a3,
     author = {R. G. Novikov and G. M. Henkin},
     title = {Oscillating weakly localized solutions of the {Korteweg{\textendash}de} {Vries} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {199--213},
     year = {1984},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/}
}
TY  - JOUR
AU  - R. G. Novikov
AU  - G. M. Henkin
TI  - Oscillating weakly localized solutions of the Korteweg–de Vries equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 199
EP  - 213
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/
LA  - ru
ID  - TMF_1984_61_2_a3
ER  - 
%0 Journal Article
%A R. G. Novikov
%A G. M. Henkin
%T Oscillating weakly localized solutions of the Korteweg–de Vries equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 199-213
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/
%G ru
%F TMF_1984_61_2_a3
R. G. Novikov; G. M. Henkin. Oscillating weakly localized solutions of the Korteweg–de Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 199-213. http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[2] Faddeev L. D., Sovremennye problemy matematiki, 3, VINITI, M., 1974, 93–180 | MR

[3] Marchenko V. A., Operatory Shturma-Liuvilya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[4] Abraham P. B., Defacio B., Moses H. E., Two distinct local potentials with no bound states can have the same scattering operator, Preprint, University of Lowell, Massachusett, 1982 | MR | Zbl

[5] Davydov R. N., Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, no. 40, Vischa shkola, Kharkov, 1983, 47–56 | MR

[6] Gelfand I. M., Levitan B. M., Izv. AN SSSR, ser. matem., 15:4 (1951), 309–360 | MR | Zbl

[7] Markushevich V. M., Reznikov E. L., Vychislitelnaya seismologiya, 17, Nauka, M., 1984

[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 3, Mir, M., 1982 | MR

[9] Krichever I. M., Zapiski nauchnykh seminarov LOMI, 84, 1979, 117–130 | MR | Zbl

[10] Arkadev V. A., Pogrebkov A. K., Polivanov M. K., Zapiski nauchnykh seminarov LOMI, 133, 1984, 17–37 | MR | Zbl