@article{TMF_1984_61_2_a3,
author = {R. G. Novikov and G. M. Henkin},
title = {Oscillating weakly localized solutions of the {Korteweg{\textendash}de} {Vries} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {199--213},
year = {1984},
volume = {61},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/}
}
TY - JOUR AU - R. G. Novikov AU - G. M. Henkin TI - Oscillating weakly localized solutions of the Korteweg–de Vries equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 199 EP - 213 VL - 61 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/ LA - ru ID - TMF_1984_61_2_a3 ER -
R. G. Novikov; G. M. Henkin. Oscillating weakly localized solutions of the Korteweg–de Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 199-213. http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/
[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR
[2] Faddeev L. D., Sovremennye problemy matematiki, 3, VINITI, M., 1974, 93–180 | MR
[3] Marchenko V. A., Operatory Shturma-Liuvilya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR
[4] Abraham P. B., Defacio B., Moses H. E., Two distinct local potentials with no bound states can have the same scattering operator, Preprint, University of Lowell, Massachusett, 1982 | MR | Zbl
[5] Davydov R. N., Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, no. 40, Vischa shkola, Kharkov, 1983, 47–56 | MR
[6] Gelfand I. M., Levitan B. M., Izv. AN SSSR, ser. matem., 15:4 (1951), 309–360 | MR | Zbl
[7] Markushevich V. M., Reznikov E. L., Vychislitelnaya seismologiya, 17, Nauka, M., 1984
[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 3, Mir, M., 1982 | MR
[9] Krichever I. M., Zapiski nauchnykh seminarov LOMI, 84, 1979, 117–130 | MR | Zbl
[10] Arkadev V. A., Pogrebkov A. K., Polivanov M. K., Zapiski nauchnykh seminarov LOMI, 133, 1984, 17–37 | MR | Zbl