Oscillating weakly localized solutions of the Korteweg--de Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 199-213

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical inverse scattering method is adapted to obtain weakly localized solutions of the KdV equation for which the transmission coefficient of the scattering matrix can vanish for a finite set of momenta.
@article{TMF_1984_61_2_a3,
     author = {R. G. Novikov and G. M. Henkin},
     title = {Oscillating weakly localized solutions of the {Korteweg--de} {Vries} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {199--213},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/}
}
TY  - JOUR
AU  - R. G. Novikov
AU  - G. M. Henkin
TI  - Oscillating weakly localized solutions of the Korteweg--de Vries equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 199
EP  - 213
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/
LA  - ru
ID  - TMF_1984_61_2_a3
ER  - 
%0 Journal Article
%A R. G. Novikov
%A G. M. Henkin
%T Oscillating weakly localized solutions of the Korteweg--de Vries equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 199-213
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/
%G ru
%F TMF_1984_61_2_a3
R. G. Novikov; G. M. Henkin. Oscillating weakly localized solutions of the Korteweg--de Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 199-213. http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/