Oscillating weakly localized solutions of the Korteweg--de Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 199-213
Voir la notice de l'article provenant de la source Math-Net.Ru
The classical inverse scattering method is adapted to obtain weakly localized solutions
of the KdV equation for which the transmission coefficient of the scattering matrix
can vanish for a finite set of momenta.
@article{TMF_1984_61_2_a3,
author = {R. G. Novikov and G. M. Henkin},
title = {Oscillating weakly localized solutions of the {Korteweg--de} {Vries} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {199--213},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/}
}
TY - JOUR AU - R. G. Novikov AU - G. M. Henkin TI - Oscillating weakly localized solutions of the Korteweg--de Vries equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 199 EP - 213 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/ LA - ru ID - TMF_1984_61_2_a3 ER -
R. G. Novikov; G. M. Henkin. Oscillating weakly localized solutions of the Korteweg--de Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 199-213. http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a3/