Collisionless transport equation for photons in a moving medium
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 312-320
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A collisionless transport equation is derived from Maxwell's equations for photons in a nonrandom moving medium. An effective metric tensor, which depends on the 4-velocity of the medium and the refractive index, is used in the material equations. The equations for the density matrix of the photons, written down in the relativistic Wigner representation, give the required transport equation on the transition to the approximation of geometrical optics. This equation makes it possible to determine not only the intensity of the electromagnetic radiation in the medium but also its polarization. The mean Minkowski and Abraham energy-momentum tensors are calculated and their physical meaning is discussed.
@article{TMF_1984_61_2_a12,
     author = {V. V. Gonyaev and M. I. Kalinin},
     title = {Collisionless transport equation for photons in a moving medium},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {312--320},
     year = {1984},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a12/}
}
TY  - JOUR
AU  - V. V. Gonyaev
AU  - M. I. Kalinin
TI  - Collisionless transport equation for photons in a moving medium
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 312
EP  - 320
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a12/
LA  - ru
ID  - TMF_1984_61_2_a12
ER  - 
%0 Journal Article
%A V. V. Gonyaev
%A M. I. Kalinin
%T Collisionless transport equation for photons in a moving medium
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 312-320
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a12/
%G ru
%F TMF_1984_61_2_a12
V. V. Gonyaev; M. I. Kalinin. Collisionless transport equation for photons in a moving medium. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 312-320. http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a12/

[1] Anderson J. L., Spiegel E. A., Astrophys. J., 202:2 (1975), 454–464 | DOI

[2] Lau C. W., Watson K. M., J. Math. Phys., 11:11 (1970), 3125–3137 | DOI

[3] Sedov L. I., Mekhanika sploshnoi sredy, t. I, Nauka, M., 1973, 535 pp. | MR

[4] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1973, 460 pp. | MR

[5] Gonyaev V. V., TMF, 42:2 (1980), 213–222 | MR

[6] Akhiezer A. I., Berestetskii V. B., Kvantovaya elektrodinamika, Nauka, M., 1981, 223 pp. | MR

[7] Vlasov A. A., Statisticheskie funktsii raspredeleniya, Nauka, M., 1966, 356 pp. | MR | Zbl

[8] Cattaneo C., Colloq. internat. CNRS, no. 170, 1969, 227–235

[9] Chernikov N. A., DAN SSSR, 144:2 (1962), 314–317 | MR | Zbl