Algebras of observables of nearly canonical physical theories. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 174-182
Voir la notice de l'article provenant de la source Math-Net.Ru
The general problem to which this paper and earlier work [1–4]
refers is discussed. The Jaeobi identity is equivalent [5] to the
fulfillment of two identities corresponding to two one-dimensional
irreducible inequivalent representations of the symmetric group of
third order. The functional equations generated by these
identities in the algebras of functions invariant with respect to
the group of displacements are solved. Previously unknown examples
of algebras are obtained.
@article{TMF_1984_61_2_a1,
author = {G. K. Tolokonnikov},
title = {Algebras of observables of nearly canonical physical theories. {II}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {174--182},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a1/}
}
G. K. Tolokonnikov. Algebras of observables of nearly canonical physical theories. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 2, pp. 174-182. http://geodesic.mathdoc.fr/item/TMF_1984_61_2_a1/