Asymptotic solutions of whispering-gallery type for the time-dependent Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 92-98
Cet article a éte moissonné depuis la source Math-Net.Ru
Formal asymptotic solutions of the time-dependent Schrödinger equation that are concentrated in the neighborhood of the boundary of a cylindrical region and satisfy the zero-value boundary condition are constructed. It is shown that the leading term in the asymptotic solution can be calculated if the solution is known to the Cauchy problem for the Hamilton system corresponding to the problem of classical mechanics of the motion of a material point subject to a holonomic constraint.
@article{TMF_1984_61_1_a8,
author = {A. A. Denisov},
title = {Asymptotic solutions of whispering-gallery type for the time-dependent {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {92--98},
year = {1984},
volume = {61},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a8/}
}
A. A. Denisov. Asymptotic solutions of whispering-gallery type for the time-dependent Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 92-98. http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a8/
[1] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977, 384 pp. | MR
[2] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976, 192 pp. | MR
[3] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972, 456 pp. | MR
[4] Babich V. M., Kirpichnikova N. Ya., Metod pogranichnogo sloya v zadachakh difraktsii, LGU, L., 1974, 124 pp. | MR
[5] Kirpichnikova N. Ya., Zap. nauchn. semin. LOMI, 89, 1979, 112–119 | MR | Zbl
[6] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979, 432 pp. | MR