Trace formula in Lagrangian mechanics
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 52-63
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The variational equation (Jacobi equation) on a fixed trajectory
of a natural Lagrangian system leads to a certain linear
differential operator. The trace formula expresses a suitably
regularized determinant of this operator in terms of the
determinant of a finite-dimensional operator generated by the
classical motion in the neighborhood of the trajectory. The aim of
the paper is to discuss such a formula in a fairly free
geometrical framework and establish its connection with the trace
formula in general Hamiltonian mechanics, which was the subject of
a preceding publication of the authors.
			
            
            
            
          
        
      @article{TMF_1984_61_1_a5,
     author = {V. S. Buslaev and E. A. Nalimova},
     title = {Trace formula in {Lagrangian} mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {52--63},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a5/}
}
                      
                      
                    V. S. Buslaev; E. A. Nalimova. Trace formula in Lagrangian mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 52-63. http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a5/