Trace formula in Lagrangian mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 52-63

Voir la notice de l'article provenant de la source Math-Net.Ru

The variational equation (Jacobi equation) on a fixed trajectory of a natural Lagrangian system leads to a certain linear differential operator. The trace formula expresses a suitably regularized determinant of this operator in terms of the determinant of a finite-dimensional operator generated by the classical motion in the neighborhood of the trajectory. The aim of the paper is to discuss such a formula in a fairly free geometrical framework and establish its connection with the trace formula in general Hamiltonian mechanics, which was the subject of a preceding publication of the authors.
@article{TMF_1984_61_1_a5,
     author = {V. S. Buslaev and E. A. Nalimova},
     title = {Trace formula in {Lagrangian} mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {52--63},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a5/}
}
TY  - JOUR
AU  - V. S. Buslaev
AU  - E. A. Nalimova
TI  - Trace formula in Lagrangian mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 52
EP  - 63
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a5/
LA  - ru
ID  - TMF_1984_61_1_a5
ER  - 
%0 Journal Article
%A V. S. Buslaev
%A E. A. Nalimova
%T Trace formula in Lagrangian mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 52-63
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a5/
%G ru
%F TMF_1984_61_1_a5
V. S. Buslaev; E. A. Nalimova. Trace formula in Lagrangian mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 52-63. http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a5/