Trace formula in Lagrangian mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 52-63
Cet article a éte moissonné depuis la source Math-Net.Ru
The variational equation (Jacobi equation) on a fixed trajectory of a natural Lagrangian system leads to a certain linear differential operator. The trace formula expresses a suitably regularized determinant of this operator in terms of the determinant of a finite-dimensional operator generated by the classical motion in the neighborhood of the trajectory. The aim of the paper is to discuss such a formula in a fairly free geometrical framework and establish its connection with the trace formula in general Hamiltonian mechanics, which was the subject of a preceding publication of the authors.
@article{TMF_1984_61_1_a5,
author = {V. S. Buslaev and E. A. Nalimova},
title = {Trace formula in {Lagrangian} mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {52--63},
year = {1984},
volume = {61},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a5/}
}
V. S. Buslaev; E. A. Nalimova. Trace formula in Lagrangian mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 52-63. http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a5/