Self-similar solutions of the equations of general relativity associated with the solutions of P-type equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 155-160
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the connection between self-similar solutions of the Ernst and Einstein–Maxwell equations and the solutions of equations without moving critical points. Two forms of partial differential equations are found that have the Ernst equation as a special ease. The solutions of these equations can be expressed in terms of the solutions of the fifth Painlevé equation.
@article{TMF_1984_61_1_a14,
author = {V. V. Tsegel'nik},
title = {Self-similar solutions of the equations of general relativity associated with the solutions of {P-type} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {155--160},
year = {1984},
volume = {61},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a14/}
}
TY - JOUR AU - V. V. Tsegel'nik TI - Self-similar solutions of the equations of general relativity associated with the solutions of P-type equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 155 EP - 160 VL - 61 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a14/ LA - ru ID - TMF_1984_61_1_a14 ER -
%0 Journal Article %A V. V. Tsegel'nik %T Self-similar solutions of the equations of general relativity associated with the solutions of P-type equations %J Teoretičeskaâ i matematičeskaâ fizika %D 1984 %P 155-160 %V 61 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a14/ %G ru %F TMF_1984_61_1_a14
V. V. Tsegel'nik. Self-similar solutions of the equations of general relativity associated with the solutions of P-type equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 155-160. http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a14/
[1] Ernst F. J., Phys. Rev., 167:5 (1968), 1175–1178 | DOI | MR
[2] Kaliappan P., Laksmanan M., J. Math. Phys., 22:11 (1981), 2447–2451 | DOI | MR
[3] Golubev V. V., Matem. sb., 28:2 (1912), 323–349 | MR | Zbl
[4] Ains E. P., Obyknovennye differentsialnye uravneniya, GNTIU, Kharkov, 1939, 720 pp. | MR
[5] Leaute B., Marcilhacy G., Phys. Lett., 87A:4 (1982), 159–161 | DOI | MR
[6] Gromak V. I., Differentsialnye uravneniya, 12:4 (1976), 740–742 | MR | Zbl
[7] Gromak V. I., Differentsialnye uravneniya, 11:2 (1975), 373–376 | MR | Zbl
[8] Marek J. J. J., Proc. Cambrige Phylos. Sol., 64:1 (1968), 167–170 | DOI
[9] Misra R. M., Pandey D. B., J. Phys. A, 6:7 (1973), 924–927 | DOI