Infinite-range limit for correlation functions of lattice systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 3-16
Voir la notice de l'article provenant de la source Math-Net.Ru
For a lattice Fermi gas, the quantum and classical Heisenberg
models, and the Ising model it is shown that in the limit of an
interaction of infinite range the correlation functions of these
systems are identical to the expressions for them obtained in the
self-consistent field approximation. The Lebowitz–Penrose theorem
is also proved by a modified method of N. N. Bogolyubov (Jr). It
is shown in the Appendix that the number of interacting harmonics
in the method of the approximating Hamiltonian admits any growth
less than the growth of the volume of the system.
@article{TMF_1984_61_1_a0,
author = {L. A. Pastur and M. V. Shcherbina},
title = {Infinite-range limit for correlation functions of lattice systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--16},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a0/}
}
TY - JOUR AU - L. A. Pastur AU - M. V. Shcherbina TI - Infinite-range limit for correlation functions of lattice systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 3 EP - 16 VL - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a0/ LA - ru ID - TMF_1984_61_1_a0 ER -
L. A. Pastur; M. V. Shcherbina. Infinite-range limit for correlation functions of lattice systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/TMF_1984_61_1_a0/