Inversion transformation in the Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 3, pp. 423-431 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equivalence of Schrödinger equations with different types of potentials is established on the basis of an inversion transformation. It is shown that at zero energy the equation with a spherical potential is equivalent to the equation with an axisymmetric potential of special form. Exact solutions are obtained to problems of the motion of a particle with zero total energy in the field of two “fish-eye” potentials and also in the field of a potential with two Coulomb singularities.
@article{TMF_1984_60_3_a8,
     author = {Yu. N. Demkov and N. V. Semenova},
     title = {Inversion transformation in the {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {423--431},
     year = {1984},
     volume = {60},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a8/}
}
TY  - JOUR
AU  - Yu. N. Demkov
AU  - N. V. Semenova
TI  - Inversion transformation in the Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 423
EP  - 431
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a8/
LA  - ru
ID  - TMF_1984_60_3_a8
ER  - 
%0 Journal Article
%A Yu. N. Demkov
%A N. V. Semenova
%T Inversion transformation in the Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 423-431
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a8/
%G ru
%F TMF_1984_60_3_a8
Yu. N. Demkov; N. V. Semenova. Inversion transformation in the Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 3, pp. 423-431. http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a8/

[1] Demkov Yu. N., Ostrovskii V. N., ZhETF, 60:6 (1971), 2011–2018

[2] Dzhekson Dzh., Klassicheskaya elektrodinamika, Mir, M., 1965, 702 pp.

[3] Martynenko Yu. V., Firsov O. B., Chibisov M. I., ZhETF, 44:1 (1963), 225–229

[4] Vogt F., Wannier G. H., Phys. Rev., 95:5 (1954), 1190–1198 | DOI | Zbl

[5] Maxwell J. C., The scientific papers, v. 1, 2, Dover, N. Y., 1952, 1414 pp.

[6] Fok V. A., Izv. AN SSSR, VII seriya, otd. matemat. i estestv. nauk, 1935, no. 2, 169–188 | MR

[7] Demkov Yu. N., Voprosy teorii atomnykh stolknovenii, no. 2, LGU, L., 1981, 172–184

[8] Mors F. M., Feshbakh G., Metody teoreticheskoi fiziki, t. I, IL, M., 1958, 930 pp. | MR

[9] Sukhomlin N. B., Simmetriya i integrirovanie nekotorykh uravnenii matematicheskoi fiziki, Avtoref. dis. na soiskanie uch. st. kand. fiz.-matem. nauk, Kalm. GU, Elista, 1981

[10] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967, 299 pp. | MR

[11] Snow Ch., Hypergeometric and Legendre functions with applications to integral equations of potential theory, Appl. Math. Ser., 19, 1952 | MR | Zbl

[12] Demkov Yu. N., Rudakov V. S., ZhETF, 59:6 (1970), 2035–2047

[13] Semenova N. V., Vestn. LGU, ser. fizika, khimiya, 1982, no. 16, 26–33 | MR