Fock functional method and gauge invariance
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 3, pp. 372-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Foek's functional method is generalized to the case of non-Abelian gauge theories. Gauge-invariant quark and gluon creation operators are constructed. It is shown that the gauge-invariant states can be classified in accordance with the non-Abelian charge. It is shown that there exists a gauge-invariant state without particles with a complicated structure.
@article{TMF_1984_60_3_a3,
     author = {Yu. V. Novozhilov},
     title = {Fock functional method and gauge invariance},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {372--386},
     year = {1984},
     volume = {60},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a3/}
}
TY  - JOUR
AU  - Yu. V. Novozhilov
TI  - Fock functional method and gauge invariance
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 372
EP  - 386
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a3/
LA  - ru
ID  - TMF_1984_60_3_a3
ER  - 
%0 Journal Article
%A Yu. V. Novozhilov
%T Fock functional method and gauge invariance
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 372-386
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a3/
%G ru
%F TMF_1984_60_3_a3
Yu. V. Novozhilov. Fock functional method and gauge invariance. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 3, pp. 372-386. http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a3/

[1] Fock V. A., Z. Phys., 75 (1932), 622–647 | DOI

[2] Faddeev L. D., Popov V. N., Phys. Lett., B25 (1967), 30

[3] Fock V. A., Sow. Phys., 6 (1934), 425–469

[4] Novozhilov Yu. V., Tulub A. V., UFN, 61 (1957), 53 | DOI | Zbl

[5] Bargman V., Commun. Pure Appl. Math., 14 (1961), 187 | DOI | MR | Zbl

[6] Segal I. E., Illinois J. Math., 6 (1962), 500 | MR | Zbl

[7] Schweber S. S., J. Math. Phys., 3 (1962), 831 | DOI | MR | Zbl

[8] 'tHooft G., Nucl. Phys., B138 (1978), 1 ; B153 (1979), 141 | DOI | MR | DOI | MR

[9] Mandelstam S., Phys. Rev., D19 (1979), 2391

[10] Ericson K. E., Mukunda N., Skagertam B. S., Phys. Rev., D24 (1981), 2615–2625

[11] Franke V. A., Novozhilov Yu. V., Prokhvatilov E. V., Lett. Math. Phys., 5 (1981), 437–445 | DOI | MR

[12] Novozhilov Yu. V., Vestn. LGU, 1983, no. 16, 69–73 | MR

[13] Novozhilov Yu. V., Lett. Math. Phys., 8 (1984), 249–256 | DOI | MR

[14] Faddeev L. D., TMF, 1:1 (1969), 3–18 | MR | Zbl

[15] Goldstone J., Jackiw R., Phys. Lett., B74 (1978), 81 | DOI

[16] Izergin A. G., Korepin V. E., Semenov-Tyan-Shanskii M. A., Faddeev L. D., TMF, 38:1 (1979), 3–14 | MR

[17] Jackiw R., Rev. Mod. Phys., 52 (1980), 661–675 | DOI | MR