Trace formula in general Hamiltonian mechanics
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 3, pp. 344-355
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The variational equation corresponding to a fixed interval of the trajectory of a
Bamiltonian system of classical dynamics generates a linear canonical differential
operator. If a connection consistent with the sympleetic structure is defined on
the tangent bundle of the phase space, it is possible to introduce a regularized
determinant of such an operator. The trace formula expresses this determinant
in terms of the Jacobian of a transformation that is determined by the motion of
the classical system and acts on a space with dimension equal to the number of
degrees of freedom. A connection between the relations that are obtained and the
semielassical asymptotic behavior for the functional integral that describes the
dynamics of the corresponding quantum system is noted.
			
            
            
            
          
        
      @article{TMF_1984_60_3_a1,
     author = {V. S. Buslaev and E. A. Nalimova},
     title = {Trace formula in general {Hamiltonian} mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {344--355},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a1/}
}
                      
                      
                    V. S. Buslaev; E. A. Nalimova. Trace formula in general Hamiltonian mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 3, pp. 344-355. http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a1/