Trace formula in general Hamiltonian mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 3, pp. 344-355
Cet article a éte moissonné depuis la source Math-Net.Ru
The variational equation corresponding to a fixed interval of the trajectory of a Bamiltonian system of classical dynamics generates a linear canonical differential operator. If a connection consistent with the sympleetic structure is defined on the tangent bundle of the phase space, it is possible to introduce a regularized determinant of such an operator. The trace formula expresses this determinant in terms of the Jacobian of a transformation that is determined by the motion of the classical system and acts on a space with dimension equal to the number of degrees of freedom. A connection between the relations that are obtained and the semielassical asymptotic behavior for the functional integral that describes the dynamics of the corresponding quantum system is noted.
@article{TMF_1984_60_3_a1,
author = {V. S. Buslaev and E. A. Nalimova},
title = {Trace formula in general {Hamiltonian} mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {344--355},
year = {1984},
volume = {60},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a1/}
}
V. S. Buslaev; E. A. Nalimova. Trace formula in general Hamiltonian mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 3, pp. 344-355. http://geodesic.mathdoc.fr/item/TMF_1984_60_3_a1/
[1] Kac M., Integration in Function Spaces and Some of Its Applications, Pisa, 1980, 82 pp. | MR
[2] Buslaev V. S., DAN SSSR, 182:4 (1968), 743–746 | MR | Zbl
[3] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, LGU, L., 1976, 295 pp.
[4] Buslaev V. S., Rybakina E. A., “Formula sleda v gamiltonovoi mekhanike”, Zap. nauchn. semin. LOMI, 115, 1982, 40–60 | MR | Zbl
[5] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., Ann. of Phys., 111:1 (1978), 61–110 | DOI | MR | Zbl
[6] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve, Nauka, M., 1967, 508 pp. | MR