Formulation of boundary conditions for the BBGKY hierarchy with allowance for local conservation laws
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 270-279

Voir la notice de l'article provenant de la source Math-Net.Ru

A new boundary condition for the Bogolyubov (BBGKY) hierarchy that takes into account correlations associated with local conservation laws is formulated. The explicit form of the boundary conditions is found for all reduced distribution functions. It is shown that in the simplest approximation of “binary collisions” this boundary condition leads to a kinetic equation for the single-particle distribution function in the form of the modified Enskog equation.
@article{TMF_1984_60_2_a9,
     author = {D. N. Zubarev and V. G. Morozov},
     title = {Formulation of boundary conditions for the {BBGKY} hierarchy with allowance for local conservation laws},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {270--279},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a9/}
}
TY  - JOUR
AU  - D. N. Zubarev
AU  - V. G. Morozov
TI  - Formulation of boundary conditions for the BBGKY hierarchy with allowance for local conservation laws
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 270
EP  - 279
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a9/
LA  - ru
ID  - TMF_1984_60_2_a9
ER  - 
%0 Journal Article
%A D. N. Zubarev
%A V. G. Morozov
%T Formulation of boundary conditions for the BBGKY hierarchy with allowance for local conservation laws
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 270-279
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a9/
%G ru
%F TMF_1984_60_2_a9
D. N. Zubarev; V. G. Morozov. Formulation of boundary conditions for the BBGKY hierarchy with allowance for local conservation laws. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 270-279. http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a9/