Correlation functions of one-dimensional Bose gas in thermodynamic equilibrium
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 262-269 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The state of thermodynamic equilibrium of a one-dimensional Bose gas at nonzero temperature is considered. A method of calculating the correlation functions in this system is illustrated by the simplest example of the current correlation function. The expressions of the algebraic Bethe ansatz [1] are extremely helpful.
@article{TMF_1984_60_2_a8,
     author = {N. M. Bogolyubov and V. E. Korepin},
     title = {Correlation functions of one-dimensional {Bose} gas in thermodynamic equilibrium},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {262--269},
     year = {1984},
     volume = {60},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a8/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - V. E. Korepin
TI  - Correlation functions of one-dimensional Bose gas in thermodynamic equilibrium
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 262
EP  - 269
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a8/
LA  - ru
ID  - TMF_1984_60_2_a8
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A V. E. Korepin
%T Correlation functions of one-dimensional Bose gas in thermodynamic equilibrium
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 262-269
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a8/
%G ru
%F TMF_1984_60_2_a8
N. M. Bogolyubov; V. E. Korepin. Correlation functions of one-dimensional Bose gas in thermodynamic equilibrium. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 262-269. http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a8/

[1] Faddeev L. D., “Problema kvantovoi teorii polya”, Trudy V Mezhdunarodnogo soveschaniya po nelokalnym teoriyam polya, OIYaI, Dubna, 1979, 249–304

[2] Bogolyubov N. N., Izv. AN SSSR, ser. fiz., 11:1 (1947), 77–90 | MR

[3] Berezin F. A., Pokhil G. P., Finkelberg V. M., Vestn. MGU, ser. mat.-mekh., 1964, no. 1, 21–28 | MR

[4] McGuire J. B., J. Math. Phys., 5:5 (1964), 622–629 | DOI | MR

[5] Sklyanin E. K., Faddeev L. D., DAN SSSR, 243:6 (1978), 1430–1433

[6] Sklyanin E. K., DAN SSSR, 244:6 (1978), 1337–1341 | MR

[7] Izergin A. G., Korepin V. E., Smirnov F. A., TMF, 48:3 (1981), 319–323 | MR

[8] Izergin A. G., Korepin V. E., Zap. nauchn. semin. LOMI, 120, 1982, 69–74 | MR

[9] Lieb E. H., Liniger W., Phys. Rev., 130:4 (1963), 1605–1624 | DOI | MR

[10] Yang C. N., Yang C. P., J. Math. Phys., 10:7 (1969), 1115–1122 | DOI | MR | Zbl

[11] Korepin V. E., TMF, 41:2 (1979), 169–189 | MR

[12] Korepin V. E., Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[13] Izergin A. G., Korepin V. E., Zap. nauchn. semin. LOMI, 133, 1984, 92–112 | MR | Zbl

[14] Korepin V. E., Zap. nauchn. semin. LOMI, 133, 1984, 133–145 | MR | Zbl

[15] Korepin V. E., DAN SSSR, 265:6 (1982), 1361–1364 | MR

[16] Izergin A. G., Korepin V. E., Zap. nauchn. semin. LOMI, 131, 1983, 80–87 | MR