Dynamic stochasticity and quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 224-244

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that after quantization of a classical dynamically stochastic system 1) the spectrum can be purely discrete, 2) stationary states correspond to simple closed classical trajectories, 3) stochastically entangled motions are “pushed” upward in energy to infinity.
@article{TMF_1984_60_2_a5,
     author = {B. V. Medvedev},
     title = {Dynamic stochasticity and quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {224--244},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a5/}
}
TY  - JOUR
AU  - B. V. Medvedev
TI  - Dynamic stochasticity and quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 224
EP  - 244
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a5/
LA  - ru
ID  - TMF_1984_60_2_a5
ER  - 
%0 Journal Article
%A B. V. Medvedev
%T Dynamic stochasticity and quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 224-244
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a5/
%G ru
%F TMF_1984_60_2_a5
B. V. Medvedev. Dynamic stochasticity and quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 224-244. http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a5/