Renormalization group and functional selfsimilarity in different branches of physics
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 218-223
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A general formulation of “different” renormalization groups is given for different
branches of physics-quantum field theory, the theory of kinetic phenomena,
turbulence theory, polymer physics, the theory of radiative transfer. The unified
formulation uses the language of group transformations and functional equations.
The transformations and equations are based on a simple property, functional
self-similarity, which is a generalization of ordinary self-similarity. The difference
between the physical basis of the renormalization-group transformations in systems
with infinitely large number of degrees of freedom and the functional self-similarity
of simple physical systems is discussed.
			
            
            
            
          
        
      @article{TMF_1984_60_2_a4,
     author = {D. V. Shirkov},
     title = {Renormalization group and functional selfsimilarity in different branches of physics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {218--223},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a4/}
}
                      
                      
                    TY - JOUR AU - D. V. Shirkov TI - Renormalization group and functional selfsimilarity in different branches of physics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 218 EP - 223 VL - 60 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a4/ LA - ru ID - TMF_1984_60_2_a4 ER -
D. V. Shirkov. Renormalization group and functional selfsimilarity in different branches of physics. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 218-223. http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a4/