Algebraic and Hamiltonian methods in the theory of non-Abelian anomalies
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 206-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The non-Abelian anomalies and the Wess–Zumino action are given a new interpretation in terms of infinitesimal and global cocycles of the representation of the gauge group acting on functionals of Yang–Mills fields. On the basis of this interpretation, two simple methods of nonperturbative calculation of the anomalies and the Wess–Zumino action are proposed.
@article{TMF_1984_60_2_a3,
     author = {L. D. Faddeev and S. L. Shatashvili},
     title = {Algebraic and {Hamiltonian} methods in the theory of {non-Abelian} anomalies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {206--217},
     year = {1984},
     volume = {60},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a3/}
}
TY  - JOUR
AU  - L. D. Faddeev
AU  - S. L. Shatashvili
TI  - Algebraic and Hamiltonian methods in the theory of non-Abelian anomalies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 206
EP  - 217
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a3/
LA  - ru
ID  - TMF_1984_60_2_a3
ER  - 
%0 Journal Article
%A L. D. Faddeev
%A S. L. Shatashvili
%T Algebraic and Hamiltonian methods in the theory of non-Abelian anomalies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 206-217
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a3/
%G ru
%F TMF_1984_60_2_a3
L. D. Faddeev; S. L. Shatashvili. Algebraic and Hamiltonian methods in the theory of non-Abelian anomalies. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 206-217. http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a3/

[1] Adler L. S., Phys. Rev., 177:5(11) (1969), 2426–2438 | DOI

[2] Bardeen W. A., Phys. Rev., 184:5 (1969), 1848–1859 | DOI

[3] Gross D. J., Jackiw R., Phys. Rev. D, 6:2 (1972), 477–493 | DOI

[4] Stora R., Algebraic structure and topological origin of anomalies, Preprint LAAP-TH-94, 1983, 20 pp. | MR

[5] Andrianov A., Bonora L., Pasti S., Anomalies, cohomology and finite mode regularization in higher dimensions, Preprint DFPD 30/83, 1983, 25 pp. | MR

[6] Wess J., Zumino B., Phys. Lett. B, 37 B:1 (1971), 95–97 | DOI | MR

[7] Novikov S. P., DAN SSSR, 260:1 (1981), 31–34 | MR

[8] Novikov S. P., UMN, 37:5(227) (1982), 3–49 | MR | Zbl

[9] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978, 240 pp. | MR

[10] Chern S. S., Simons J., Proc. Nat. Acad. Sci. USA, 68:4 (1971), 791–794 | DOI | MR | Zbl

[11] Jackiw R., Topological investigations of quantized gauge theories, Preprint CTP-1108, 1983, 152 pp. | MR

[12] Deser S., Jackiw R., Templton S., Ann. Phys., 140:2 (1982), 372–411 | DOI | MR

[13] Witten E., Nucl. Phys. B, B223:2 (1983), 422–432 | DOI | MR

[14] Chou K.-C, Guo H.-Y., Wu K., Song X.-C., Phys. Lett. B, 134B:1–2 (1984), 67–69 | MR

[15] Alvarez-Gaumé L., Witten E., Gravitational anomalies, Preprint HUTP-83/A039, 1983, 105 pp. | MR

[16] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960, 510 pp. | MR

[17] Faddeev D. K., DAN SSSR, VIII:3 (1947), 361–364 | MR