Operator product expansion in two-dimensional quantum electrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 199-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An operator product expansion in two-dimensional massless quantum electrodynamics is obtained. A basis of the expansion is obtained in which all the nonanalytic dependences on the coupling constant are contained in the operators. In this basis, there is a correspondence in the leading logarithmic expansion between the exact operator expansion and the standard Wilson expansion. Complete agreement of these expansions requires establishment of the exact connection between the ultraviolet subtraction point for the operators and the infrared subtraction point for the coefficient functions.
@article{TMF_1984_60_2_a2,
     author = {A. A. Pivovarov and A. N. Tavkhelidze and V. F. Tokarev},
     title = {Operator product expansion in two-dimensional quantum electrodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {199--205},
     year = {1984},
     volume = {60},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a2/}
}
TY  - JOUR
AU  - A. A. Pivovarov
AU  - A. N. Tavkhelidze
AU  - V. F. Tokarev
TI  - Operator product expansion in two-dimensional quantum electrodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 199
EP  - 205
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a2/
LA  - ru
ID  - TMF_1984_60_2_a2
ER  - 
%0 Journal Article
%A A. A. Pivovarov
%A A. N. Tavkhelidze
%A V. F. Tokarev
%T Operator product expansion in two-dimensional quantum electrodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 199-205
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a2/
%G ru
%F TMF_1984_60_2_a2
A. A. Pivovarov; A. N. Tavkhelidze; V. F. Tokarev. Operator product expansion in two-dimensional quantum electrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 199-205. http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a2/

[1] Logunov A. A., Soloviev L. D., Tavkhelidze A. N., Phys. Lett., 24B:4 (1967), 181–182 | DOI

[2] Kuzmin V. A., Tavkhelidze A. N., Chetyrkin K. G., Pisma v ZhETF, 25:9 (1977), 456–459; Красников Н. В., Тавхелидзе А. Н., Четыркин К. Г., ТМФ, 35:2 (1978), 147–150 ; Phys. Lett., 76B:1 (1978), 83–84 | MR

[3] Shifman M. A., Vainshtein A. I., Zakharov V. I., Nucl. Phys., B147:4 (1979), 385–447 | DOI

[4] Ignatev A. Yu., Matveev V. A., Tavkhelidze A. N., Chetyrkin K. G., Shaposhnikov M. E., TMF, 53:2 (1982), 181–187 | MR

[5] Wilson K., Phys. Rev., 179:6 (1969), 1499–1503 | DOI | MR

[6] Zimmermann W., Commun. Math. Phys., 15 (1969), 208 ; Chetyrkin K. G., Gorishny S. G., Tkachov F. V., Phys. Lett., 119B:4, 5, 6 (1982), 407–411 | DOI | MR | Zbl | DOI

[7] Schwinger J., Phys. Rev., 128:5 (1962), 2425–2429 | DOI | MR | Zbl

[8] Lowenstein J. H., Swieca J. A., Ann. of Phys., 68:1 (1971), 172–195 ; Красников Н. В., Матвеев В. А., Рубаков В. А., Тавхелидзе А. Н., Токарев В. Ф., ТМФ, 45:3 (1980), 313–328 ; Rothe K. D., Swieca J. A., Phys. Rev., D15:3 (1977), 541–544 | DOI | MR | MR

[9] Pivovarov A. A., Tavkhelidze N. N., Tokarev V. F., Phys. Lett., 132B:4, 5, 6 (1983), 402–406 | DOI

[10] Tavkhelidze A. N., Tokarev V. F., Struktura osnovnogo sostoyaniya i svoistva funktsii Grina ot bestsvetnykh operatorov v modeli Shvingera, Preprint IYaI P-0314, IYaI, M., 1983, 32 pp.