Conformal bootstrap equations for Yang–Mills type interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 317-319
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the conformal bootstrap equations for a Yaag–Mitls type interaction admit a solution with dimension of the vector field near zero (zero dimension corresponds to the asymptotic behavior of the gluon propagator).
@article{TMF_1984_60_2_a12,
author = {A. N. Vasil'ev and M. M. Perekalin and Yu. M. Pis'mak},
title = {Conformal bootstrap equations for {Yang{\textendash}Mills} type interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {317--319},
year = {1984},
volume = {60},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a12/}
}
TY - JOUR AU - A. N. Vasil'ev AU - M. M. Perekalin AU - Yu. M. Pis'mak TI - Conformal bootstrap equations for Yang–Mills type interaction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 317 EP - 319 VL - 60 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a12/ LA - ru ID - TMF_1984_60_2_a12 ER -
A. N. Vasil'ev; M. M. Perekalin; Yu. M. Pis'mak. Conformal bootstrap equations for Yang–Mills type interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 317-319. http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a12/
[1] Mandelstam S., Phys. Rev., D20:12 (1979), 3223–3238 ; Baker M., Ball J. S., Zachariazen F., Nucl. Phys., B186 (1981), 531–559 ; 560–572; Алексеев А. И., Арбузов Б. А., Байков В. А., ТМФ, 52:2 (1982), 187–198 | DOI
[2] Vasilev A. N., Perekalin M. M., Pismak Yu. M., TMF, 55:3 (1983), 323–334
[3] Palchik M. Ya., Fradkin E. S., Lektsii dlya molodykh uchenykh. V. 4. Vvedenie v konformno-invariantnuyu teoriyu kvantovannykh polei, OIYaI, 2-8874, OIYaI, Dubna, 1975
[4] Vasilev A. N., Pismak Yu. M., Khonkonen Yu. R., TMF, 50:2 (1982), 195–206
[5] Polyakov A. M., Pisma v ZhETF, 12:11 (1970), 538–542
[6] Parisi G., Lett. Nuovo Cim., 4:15 (1972), 777–781 | DOI