Twistor connection and conformal gravitation
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 311-316

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a local twistor connection is introduced. For the Yang–Mills Lagrangian of the standard twistor connection (which depends on the metric and its first and second derivatives) two variational principles are considered: a) variation with respect to the connection (which leads to 60 equations, of which 50 are shown to vanish identically); b) variation with respect to the metric (leading to ten equations). It is established that the extremals of the two variational principles are the same and lead to the vacuum equations of Hach. A modification of the standard twistor connection to make it depend on the electromagnetic field tensor as well is proposed. It is shown that in this case too the two variational principles lead to the same equations – the conformally invariant equations of Bach in the presence of an electromagnetic field and the free Maxwell equations.
@article{TMF_1984_60_2_a11,
     author = {S. A. Merkulov},
     title = {Twistor connection and conformal gravitation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {311--316},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a11/}
}
TY  - JOUR
AU  - S. A. Merkulov
TI  - Twistor connection and conformal gravitation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 311
EP  - 316
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a11/
LA  - ru
ID  - TMF_1984_60_2_a11
ER  - 
%0 Journal Article
%A S. A. Merkulov
%T Twistor connection and conformal gravitation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 311-316
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a11/
%G ru
%F TMF_1984_60_2_a11
S. A. Merkulov. Twistor connection and conformal gravitation. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 2, pp. 311-316. http://geodesic.mathdoc.fr/item/TMF_1984_60_2_a11/