Nonperturbative vacuum energy density in two-dimensional scalar models
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 1, pp. 72-86
Voir la notice de l'article provenant de la source Math-Net.Ru
An upper bound that is uniform with respect to the coupling
constant $g$ and the field is obtained for the effective potential
for a two-dimensional scalar field theory with arbitrary
self-interaction. The “nonexistence” of the :$\cos\alpha\varphi$:
and :$\varphi^{2N}\exp\alpha\varphi$: models for $\alpha^2\geq 8\pi$ is
proved. Exact asymptotic behaviors with respect to $g$ are found for
the vacuum energy density for the $P(\varphi)_2$ and Hoegh-Krohn
:$\exp\alpha\varphi$: models, and also for the total propagator at
zero momentum.
@article{TMF_1984_60_1_a7,
author = {S. K. Karepanov},
title = {Nonperturbative vacuum energy density in two-dimensional scalar models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {72--86},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a7/}
}
S. K. Karepanov. Nonperturbative vacuum energy density in two-dimensional scalar models. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 1, pp. 72-86. http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a7/