Normal modes and relaxation processes in magnetically ordered materials with single-ion anisotropy
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 1, pp. 133-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of diagonalizing a spin Hamiltonian proposed earlier by the authors [8] is generalized to systems with nonequidistant spectrum. The treatment is given in the framework of the diagram technique for operators of a universal basis [6, 7] for the example of the nuclear subsystem of an antiferromagnet with quadrupole interaction, which plays the part of single-site axial anisotropy. The spectrum of nuclear spin waves with quadrupole splitting is found and the relaxation frequencies of these waves due to their scattering by thermal fluctuations in the longitudinal component of the nuclear spins are determined.
@article{TMF_1984_60_1_a12,
     author = {D. A. Garanin and V. S. Lutovinov},
     title = {Normal modes and relaxation processes in magnetically ordered materials with single-ion anisotropy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {133--144},
     year = {1984},
     volume = {60},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a12/}
}
TY  - JOUR
AU  - D. A. Garanin
AU  - V. S. Lutovinov
TI  - Normal modes and relaxation processes in magnetically ordered materials with single-ion anisotropy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 133
EP  - 144
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a12/
LA  - ru
ID  - TMF_1984_60_1_a12
ER  - 
%0 Journal Article
%A D. A. Garanin
%A V. S. Lutovinov
%T Normal modes and relaxation processes in magnetically ordered materials with single-ion anisotropy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 133-144
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a12/
%G ru
%F TMF_1984_60_1_a12
D. A. Garanin; V. S. Lutovinov. Normal modes and relaxation processes in magnetically ordered materials with single-ion anisotropy. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a12/

[1] Vaks V. G., Larkin A. I., Pikin S. A., ZhETF, 53:1 (1967), 281–291

[2] Pikalev E. M., Savchenko M. A., Shoiom I., ZhETF, 55:4 (1968), 1404–1414

[3] Izyumov Yu. A., Kassan-ogly F. A., Skryabin Yu. N., Polevye metody v teorii ferromagnetizma, Nauka, M., 1974

[4] Haley S., Erdös P., Phys. Rev., B5:3 (1972), 1106–1119 | DOI

[5] Yang D. H.-Y., Wang Y.-L., Phys. Rev., B10:11 (1974), 4714–4723 ; B12:3 (1975), 1057–1070 | DOI | DOI | MR

[6] Zaitsev R. O., ZhETF, 68:1 (1975), 207–215

[7] Garanin D. A., Lutovinov V. S., TMF, 55:1 (1983), 106–117

[8] Garanin D. A., Lutovinov V. S., Solid State Commun., 44:9 (1982), 1359–1362 | DOI

[9] Garanin D. A., Lutovinov V. S., ZhETF, 85:6 (1983), 2060–2075

[10] Suhl H., Phys. Rev., 109:2 (1958), 606 | DOI

[11] Nakamura T., Progr. Teor. Phys., 20:3 (1958), 542–552 | DOI | MR

[12] Evtikhiev N. N., Lutovinov V. S., Savchenko M. A., Safonov V. L., Pisma v ZhTF, 6:24 (1980), 1527–1531

[13] Lankaster P., Teoriya matrits, Nauka, M., 1978 | MR

[14] Allen S. J., Guggenheim H. J., Phys. Rev., B4:3 (1971), 937–968 | DOI

[15] Kaschenko M. P., Balakhonov N. F., Kurbatov L. V., ZhETF, 64:1 (1973), 391–400