Classification of exactly integrable embeddings of two-dimensional manifolds. The coefficients of the third fundamental forms
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 1, pp. 9-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method of classifying exactly and completely integrable emb.eddings in Riemannian or non-Riemannian enveloping Spaces is proposed. It is based on the algebraic approach [6, 8] to the integration of nonlinear dynamical systems. The grading conditions and the spectral composition of the Lax operators, which take values in a graded Lie algebra and distinguish the integrable classes of two-dimensional systems, are formulated in terms of the structure of the tensors of the third fundamental forms. In the framework of the method, each embedding of the three-dimensional subalgebra $\text{sl}(2)$ in a simple finite-dimensional (infinite-dimensional of finite growth) Lie algebra is associated with a definite class of exactly (completely) integrable embeddings of a two-dimensional manifold in a corresponding enveloping space equipped with the structure of .
@article{TMF_1984_60_1_a1,
     author = {M. V. Saveliev},
     title = {Classification of exactly integrable embeddings of two-dimensional manifolds. {The} coefficients of the third fundamental forms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {9--23},
     year = {1984},
     volume = {60},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a1/}
}
TY  - JOUR
AU  - M. V. Saveliev
TI  - Classification of exactly integrable embeddings of two-dimensional manifolds. The coefficients of the third fundamental forms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 9
EP  - 23
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a1/
LA  - ru
ID  - TMF_1984_60_1_a1
ER  - 
%0 Journal Article
%A M. V. Saveliev
%T Classification of exactly integrable embeddings of two-dimensional manifolds. The coefficients of the third fundamental forms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 9-23
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a1/
%G ru
%F TMF_1984_60_1_a1
M. V. Saveliev. Classification of exactly integrable embeddings of two-dimensional manifolds. The coefficients of the third fundamental forms. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 1, pp. 9-23. http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a1/

[1] Eisenhart L. P., Riemannian Geometry, Univ. Press, Princeton, 1926 | MR | Zbl

[2] Eisenhart L. P., Non-Riemanian Geometry, Amer. Math. Soc. Colloquium Publ., VIII, 1927 | MR

[3] Kagan V. F., Ocherki po geometrii, MGU, M., 1933

[4] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1964 ; Дубровин Б. А., Новиков С. П., Фоменко А. Т., Современная геометрия, Наука, М., 1979 ; Kobayashi S., Nomizu K., Foundations of Differential Geometry, Interscience Pub., N. Y., 1963 ; Helgason S., Differential Geometry, Lie groups and symmetric spaces, Acad. Press, N. Y., 1978 | MR | MR | MR | Zbl | MR | Zbl

[5] Savelev M. V., O postroenii dvumernykh rimanovykh mnogoobrazii, vlozhennykh v ob'emlyuschee evklidovoe (psevdoevklidovoe) prostranstvo, Preprint 83–32, IFVE, Serpukhov, 1983

[6] Leznov A. N., Saveliev M. V., Commun. Math. Phys., 74:1 (1980), 111–118 ; Лезнов А. Н., Савельев М. В., Смирнов В. Г., ТМФ, 48:1 (1981), 3–12 ; Leznov A. N., Saveliev M. V., Physica, 3D:1–2 (1981), 62–73 ; Лезнов А. Н., Савельев М. В., Функц. анализ и его прилож., 14:2 (1980), 87–88 | DOI | MR | Zbl | MR | Zbl | MR | Zbl

[7] Leznov A. N., Smirnov V. G., Shabat A. B., TMF, 51:1 (1982), 10–21 | MR | Zbl

[8] Leznov A. N., Saveliev M. V., Commun. Math. Phys., 89:1 (1983), 59–75 | DOI | MR | Zbl

[9] Gabeskiriya M. A., Savelev M. V., Predstavlenie tipa Laksa dlya vlozhenii rimanovykh mnogoobrazii, Preprint 83–58, IFVE, Serpukhov, 1983 | MR

[10] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 ; Фаддеев Л. Д., Соврем. проблемы матем., 3, 1974, 93–134 | MR | MR | Zbl

[11] Leznov A. N., TMF, 58:1 (1984), 156–160 | MR

[12] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR | Zbl

[13] Dynkin E. B., Matem. sb., 30 (1952), 349–462 | MR | Zbl

[14] Kats V. G., Izv. AN SSSR, ser. matem., 32:6 (1968), 1323–1367 | MR | Zbl

[15] Barbashov B. M., Nesterenko V. V., Cherviakov A. M., Commun. Math. Phys., 84:4 (1982), 471–486 | DOI | MR