Absolutely convergent $\alpha$ representation of analytically and dimensionally regularized Feynman amplitudes
Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 373-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An absolutely convergent $\alpha$ representation of analytically and (or) dimensionally regularized Feynman.amplitudes is obtained on different sections of the domain of analyticity with respect to the regularizing parameters. The representation differs from the $\alpha$ representation in the original domain of absolute convergence by the presence in the integrand of an operator $\mathscr R^*$, which has the same structure as the $R^*$ operation that generalizes dimensional renormalization when not only ultraviolet but also infrared poles are present. The operator $\mathscr R^*$ explicitly realizes analytic continuation of the parametric integral and can be expressed in terms of the ultraviolet subtracting operators and also in terms of the infrared subtracting operators that generate a Maclaurin expansion in the coordinate space.
@article{TMF_1984_59_3_a4,
     author = {V. A. Smirnov},
     title = {Absolutely convergent $\alpha$ representation of analytically and dimensionally regularized {Feynman} amplitudes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {373--387},
     year = {1984},
     volume = {59},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a4/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - Absolutely convergent $\alpha$ representation of analytically and dimensionally regularized Feynman amplitudes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 373
EP  - 387
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a4/
LA  - ru
ID  - TMF_1984_59_3_a4
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T Absolutely convergent $\alpha$ representation of analytically and dimensionally regularized Feynman amplitudes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 373-387
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a4/
%G ru
%F TMF_1984_59_3_a4
V. A. Smirnov. Absolutely convergent $\alpha$ representation of analytically and dimensionally regularized Feynman amplitudes. Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 373-387. http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a4/

[1] Speer E. R., Ann. Inst. H. Poincaré, 23 (1975), 1–21 | MR

[2] Smirnov V. A., TMF, 44:3 (1980), 307–320 ; 46:2 (1981), 199–212 | MR | MR

[3] Kosinski P., Maslanka P., J. Phys. A, 12:6 (1979), L133–L134 | DOI | MR

[4] Zavyalov O. I., Perenormirovannye diagrammy Feinmana, Nauka, M., 1979 | MR

[5] Bergère M. C., David F., J. Math. Phys., 20:6 (1979), 1244–1255 | DOI | MR

[6] Chetyrkin K. G., Tkachov F. V., Phys. Lett., 114B:5 (1982), 340–344 | DOI

[7] Tkachov F. V., Phys. Lett., 124B:3–4 (1983), 212–216 | DOI

[8] Smirnov V. A., Chetyrkin K. G., TMF, 56:2 (1983), 206–215 | MR

[9] Smirnov V. A., TMF, 46:1 (1981), 27–32 | MR

[10] Smirnov V. A., TMF, 47:1 (1981), 140–143 | MR

[11] Kharari F., Teoriya grafov, Mir, M., 1973 | MR

[12] Anikin S. A., Zavyalov O. I., Kartsev N. I., TMF, 44:3 (1980), 291–306 ; 46:1 (1981), 3–26 | MR | MR

[13] Anikin S. A., Smirnov V. A., TMF, 51:1 (1982), 3–9 | MR

[14] Breitenlohner P., Maison D., Commun. Math. Phys., 52:1 (1977), 39–75 | DOI | MR

[15] Gelfand I. M., Shilov G. E., Obobschennye funktsii, vyp. 1, Fizmatgiz, M., 1958 | MR