Integrable supermanifolds and associated nonlinear equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 367-372 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A construction of the author [1] is generalized to embeddings of supermanifolds $V_{2\mid 2}$ in an enveloping superspace equipped with the structure of a Lie superalgebra. The general treatment is illustrated by the example of the series $\text{sl}(n,n+1)$, in which the integrable supermanifolds are described by supersymmetric equations of the type of the two-dimensional Toda chain and, in particular, for $n=1$ the Liouville equation and the sine-Gordon equation.
@article{TMF_1984_59_3_a3,
     author = {M. V. Saveliev},
     title = {Integrable supermanifolds and associated nonlinear equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--372},
     year = {1984},
     volume = {59},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a3/}
}
TY  - JOUR
AU  - M. V. Saveliev
TI  - Integrable supermanifolds and associated nonlinear equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 367
EP  - 372
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a3/
LA  - ru
ID  - TMF_1984_59_3_a3
ER  - 
%0 Journal Article
%A M. V. Saveliev
%T Integrable supermanifolds and associated nonlinear equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 367-372
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a3/
%G ru
%F TMF_1984_59_3_a3
M. V. Saveliev. Integrable supermanifolds and associated nonlinear equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 367-372. http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a3/

[1] Savelev M. V., Zadacha klassifikatsii tochno integriruemykh vlozhenii dvumernykh mnogoobrazii i koeffitsienty tretikh fundamentalnykh form, Preprint 83–141, IFVE, Serpukhov, 1983

[2] Leznov A. N., Saveliev M. V., Commun. Math. Phys., 74:2 (1980), 111–118 ; 89:1 (1983), 59–75 ; Лезнов А. Н., Савельев М. В., Смирнов В. Г., ТМФ, 48:1 (1981), 3–12 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[3] Gabeskiriya M. A., Savelev M. V., Predstavlenie tipa Laksa dlya vlozhenii rimanovykh mnogoobrazii, Preprint 83–58, IFVE, Serpukhov, 1983 | MR

[4] Dynkin E. B., Matem. sb., 30 (1952), 349–462 | MR | Zbl

[5] Yu. I. Manin (red.), Geometricheskie idei v fizike, Sb. statei, Mir, M., 1983 | MR

[6] Leznov A. N., Tochno integriruemye dvumernye dinamicheskie sistemy, svyazannye s supersimmetrichnymi algebrami, Preprint 83–7, IFVE, Serpukhov, 1983

[7] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, MGU, M., 1983 ; Kostant B., Lecture Notes in Math., 570, 1977, 177–201 | MR | DOI | MR

[8] Kac V. G., Adv. Math., 30:1 (1978), 85–136 ; Лейтес Д. А., Серганова В. В., Фейгин Б. Л., Теоретико-групповые методы физики, Наука, М., 1983, 274–279 | DOI | MR | Zbl

[9] Chaichian M., Kulish P. P., Phys. Lett., 78:3 (1978), 413–416 | DOI | MR

[10] Kac V. G., Adv. Math., 26:1 (1977), 8–96 | DOI | Zbl

[11] Olshanetsky M. A., Commun. Math. Phys., 88:1 (1983), 63–76 | DOI | MR | Zbl