Asymptotics of the scattering problem for a system of one-dimensional particles
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 354-366
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It was shown by Sinai [1] that an infinite ensemble of one-dimensional particles
interacting through a finite-range potential with a hard core breaks up into clusters,
each of which moves for a certain time independently of the others. The present paper
investigates the evolution of a cluster that collides with a “hot” particle. It is shown
that as a result of the collision the particle at the extreme end of the cluster acquires
a velocity close to the initial velocity of the “hot” particle. The asymptotic behavior
of the difference between the velocities of the incident particle and the separated
particle when the initial velocity of the hot particle tends to infinity is found.
			
            
            
            
          
        
      @article{TMF_1984_59_3_a2,
     author = {L. V. Polterovich},
     title = {Asymptotics of the scattering problem for a system of one-dimensional particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--366},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a2/}
}
                      
                      
                    TY - JOUR AU - L. V. Polterovich TI - Asymptotics of the scattering problem for a system of one-dimensional particles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 354 EP - 366 VL - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a2/ LA - ru ID - TMF_1984_59_3_a2 ER -
L. V. Polterovich. Asymptotics of the scattering problem for a system of one-dimensional particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 354-366. http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a2/
