Light fermions and instantons in the $\sigma$ model
Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 465-471 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The leading terms are calculated in the expansion of the functional integral with respect to the mass of the fermions in an arbitrary topological sector for the $\sigma$ model described by Ismagilov and Franke [1]. It is shown that the addition of fermions leads to dissociation of the instantons.
@article{TMF_1984_59_3_a12,
     author = {R. G. Ismagilov},
     title = {Light fermions and instantons in the $\sigma$ model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {465--471},
     year = {1984},
     volume = {59},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a12/}
}
TY  - JOUR
AU  - R. G. Ismagilov
TI  - Light fermions and instantons in the $\sigma$ model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 465
EP  - 471
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a12/
LA  - ru
ID  - TMF_1984_59_3_a12
ER  - 
%0 Journal Article
%A R. G. Ismagilov
%T Light fermions and instantons in the $\sigma$ model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 465-471
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a12/
%G ru
%F TMF_1984_59_3_a12
R. G. Ismagilov. Light fermions and instantons in the $\sigma$ model. Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 465-471. http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a12/

[1] Ismagilov R. G., Franke V. A., TMF, 55:3 (1983), 401–406 | MR

[2] Baluni F., Phys. Lett., 106B:6 (1981), 491–496 | DOI

[3] Abrikosov A. A., Nucl. Phys., 106B:6 (1981), 491–496

[4] Shuryak E. V., The role of instantons in QGD, Preprint 81–118, IYaF SO AN SSSR, Novosibirsk, 1981, 42 pp.

[5] Perelomov A. M., UFN, 134:4 (1981), 577–607 | DOI | MR

[6] Fateev V. A., Frolov I. V., Schwartz A. S., Nucl. Phys., B154:1 (1979), 1–20 | DOI

[7] Schwartz A. S., Commun. Math. Phys., 64:3 (1979), 233–268 | DOI | MR