Integration of the $\varphi^4$ model in elliptic Jacobi functions and investigation of them by the phase plane method
Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 440-452
Cet article a éte moissonné depuis la source Math-Net.Ru
Solutions are obtained for the $\varphi^4$ model for different relationships between the signs of the constants in the Hamiltonian in the form of Jacobi elliptic functions. Such essentially nonlinear solutions, investigated on the phase plane, go over into kinks or solitons in the limiting ease for the parameter E on the separatrices S. For the lowest state $E_{\min}=U(\varphi_0)$ (vacuum), the solutions are transformed into a vacuum condensate (harmonic oscillations). Expansion of the solutions near the vacuum corresponds to the result of perturbation theory.
@article{TMF_1984_59_3_a10,
author = {V. E. Grishin and V. K. Fedyanin},
title = {Integration of the $\varphi^4$ model in elliptic {Jacobi} functions and investigation of them by the phase plane method},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {440--452},
year = {1984},
volume = {59},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a10/}
}
TY - JOUR AU - V. E. Grishin AU - V. K. Fedyanin TI - Integration of the $\varphi^4$ model in elliptic Jacobi functions and investigation of them by the phase plane method JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 440 EP - 452 VL - 59 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a10/ LA - ru ID - TMF_1984_59_3_a10 ER -
%0 Journal Article %A V. E. Grishin %A V. K. Fedyanin %T Integration of the $\varphi^4$ model in elliptic Jacobi functions and investigation of them by the phase plane method %J Teoretičeskaâ i matematičeskaâ fizika %D 1984 %P 440-452 %V 59 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a10/ %G ru %F TMF_1984_59_3_a10
V. E. Grishin; V. K. Fedyanin. Integration of the $\varphi^4$ model in elliptic Jacobi functions and investigation of them by the phase plane method. Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 440-452. http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a10/
[1] Grishin V. E., Fedyanin V. K., Anizotropnye solitony v prostranstve s razmernostyu $n>1$ v teoriyakh s abelevoi globalnoi kalibrovochnoi gruppoi, Preprint OIYaI R17–83–171, OIYaI, Dubna, 1983 | MR
[2] Fedyanin V. K., Grishin V. E., Cnoidal waves in the model $\varphi^4$ with a current-current type self-action, Preprint JINR E14–81–604, JINR, Dubna, 1981 | MR
[3] Grishin V. E., Fedyanin V. K., TMF, 54:3 (1983), 469–476 | MR
[4] Krumhansl J. A., Schrieffer J. R., Phys. Rev., B11:9 (1975), 3535–3545 | DOI
[5] Abramonitz M. A., Stegan I. A., Handbook of Mathematical Functions, National Bureau of Standards, Washington, 1964 | MR
[6] Kurdgelaidze D. F., ZhETF, 36:3 (1959), 842–849 | MR | Zbl