Model of a zero-range potential with internal structure
Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 345-353
Cet article a éte moissonné depuis la source Math-Net.Ru
A zero-range potential with internal structure is constructed using the methods of the theory of extensions from the space $L_2(\mathbb R^3)$ to the larger Hilbert space $L_2(\mathbb R^3)\oplus H$. A spectral analysis of a Schrödinger operator with such a potential is made; the S matrix is investigated and shown to be nontrivial in the $s$ channel; and the eigenvalues and resonances are calculated for small coupling constants.
@article{TMF_1984_59_3_a1,
author = {B. S. Pavlov},
title = {Model of a zero-range potential with internal structure},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {345--353},
year = {1984},
volume = {59},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a1/}
}
B. S. Pavlov. Model of a zero-range potential with internal structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 345-353. http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a1/
[1] Berezin F. A., Faddeev L. D., DAN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl
[2] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, LGU, L., 1975, 240 pp.
[3] Pavlov B. S., Faddeev M. D., TMF, 55:2 (1983), 257–268 | MR
[4] Pavlov B. S., Faddeev M. D., Zap. nauchn. seminarov LOMI, 126, 1983, 159–169 | MR | Zbl
[5] Laks P., Filipps R., Teoriya rasseyaniya, Mir, M., 1971, 312 pp. | MR
[6] Pavlov B. S., “Teoriya dilatatsii i spektralnyi analiz nesamosopryazhennykh operatorov”, Teoriya operatorov v lineinykh prostranstvakh, Tr. 7-i zimnei shkoly po matematicheskomu programmirovaniyu i smezhnym voprosam, ch. II, TsEMI AN SSSR, M., 1976, 3–69