Symmetry properties and dynamics in gauge theories with scalar fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 323-344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibility of spontaneous breaking of the local and global symmetries in gauge theories with scalar fields is discussed (as usual, spontaneous symmetry breaking is taken to mean that $[Q,H]=0$, $Q | \text{vac} \rangle\neq 0$, where $H$ is the Hamiltonian and $Q$ is the generator of a gauge transformation). It is shown that the standard assumption $\langle \varphi \rangle\neq 0$ in gauge theories does not mean that the symmetry is spontaneously broken. It is shown that under certain conditions the theory can be reformulated in terms of gauge-invariant (“colorless”) local fields. An example is given of a theory of eleetroweak interactions in which the occurrence of short-range forces transmitted by massive vector bosons is entirely due to the nonvanishing of the gauge-invariant order parameter of the vacuum expectation vatue $\langle\varphi^+\varphi\rangle=\eta$ (of a scalar condensate) and is not due to spontaneous breaking of the weak isospin. The mass spectrum of particles in non-Abelian gauge theories is analyzed in its dependence on the magnitude and sign of the scalar condensate. It is shown that for $\eta\gg\Lambda^2$ ($\Lambda$ is the reciprocal of the confinement radius) the spectrum contains only colorless states, and the weak coupling regime is realized, so that physical quantities can be calculated by perturbation theory. In the ease of a small $(|\eta|\ll\Lambda^2)$ or negahve $(\eta\sim-\Lambda^2)$ scalar condensate, the strong coupling regime is realized in the system. In QCD with massless scalar quarks in the ease $\eta\sim-\Lambda^2$ the possible existence of a new family of hadrons with masses of the order of several tens of GeV and containing scalars is predicted.
@article{TMF_1984_59_3_a0,
     author = {V. A. Matveev and A. N. Tavkhelidze and M. E. Shaposhnikov},
     title = {Symmetry properties and dynamics in gauge theories with scalar fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--344},
     year = {1984},
     volume = {59},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a0/}
}
TY  - JOUR
AU  - V. A. Matveev
AU  - A. N. Tavkhelidze
AU  - M. E. Shaposhnikov
TI  - Symmetry properties and dynamics in gauge theories with scalar fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 323
EP  - 344
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a0/
LA  - ru
ID  - TMF_1984_59_3_a0
ER  - 
%0 Journal Article
%A V. A. Matveev
%A A. N. Tavkhelidze
%A M. E. Shaposhnikov
%T Symmetry properties and dynamics in gauge theories with scalar fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 323-344
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a0/
%G ru
%F TMF_1984_59_3_a0
V. A. Matveev; A. N. Tavkhelidze; M. E. Shaposhnikov. Symmetry properties and dynamics in gauge theories with scalar fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 59 (1984) no. 3, pp. 323-344. http://geodesic.mathdoc.fr/item/TMF_1984_59_3_a0/

[1] Glashow S. L., Nucl. Phys., 22:4 (1961), 579–588 ; Weinberg S., Phys. Rev. Lett., 19:21 (1967), 1264–1266 ; Salam A., Proc. of the Nobel Symposium on Elementary Particle Theory (Lerum), ed. N. Svartholm, 1968, 367–381 | DOI | DOI

[2] Goldstone P., Phys. Rev. Lett., 19:1 (1961), 15–17 | MR

[3] Higgs P. W., Phys. Rev. Lett., 13:16 (1964), 508–509 ; Kibble T. W., Phys. Rev., 155:7 (1967), 1554–1559 | DOI | MR | DOI

[4] Frohlich J., Morchio G., Strocci F., Phys. Lett., 97B:2 (1980), 249–252 ; Nucl. Phys., B190:3 (1981), 553–582 | DOI | MR | DOI | MR

[5] Shifman M. A., Vainshtein A. I., Zakharov V. I., Nucl. Phys., B147:5 (1979), 385–578 | DOI

[6] Chetyrkin K. G., Ignatiev A. Yu., Matveev V. A., Shaposhnikov M. E., Tavkhelidze A. N., Phys. Lett., 117B:3–4 (1982), 352–356

[7] Logunov A. A., Soloviev L. D., Tavkhelidze A. N., Phys. Lett., 24B:4 (1967), 181–182 ; Chetyrkin K. G., Krasnikov N. V., Tavkhelidze A. N., Neutrino-77, Proc. Int. Conf., V. 2, Nauka, M., 1978, 189–209; Красников Н. В., Тавхелидзе А. Н., Четыркин К. Г., ТМФ, 35:2 (1978), 147–150 | DOI | MR

[8] Kirzhnits D. A., Pisma v ZhETF, 30:9 (1979), 624–626

[9] Le Rujula A., Giles R. C., Jaffe R. L., Phys. Rev. D, 17:1 (1978), 285–301 | DOI

[10] Wilson K., Phys. Rev., 179:5 (1969), 1399–1408 | DOI

[11] Krasnikov N. V., Pivovarov A. A., Tavkhelidze N. N., The Use of Finite Energy-Sum Rules for the Prescription of the Hadronic Properties of QCD, Preprint CERN TH. 3422, CERN, Cenewa, 1982

[12] Coleman S., Weinberg E., Phys. Rev. D, 7:8 (1973), 1888–1907 | DOI

[13] Ignatiev A. Yu., Kuzmin V. A., Shaposhnikov M. E., The Phenomenology of Coloured Scalars, Preprint IYaI P-0283, IYaI, M., 1983

[14] Chetyrkin K. G., Gorishny S. G., Kataev A. L., Larin S. A., Tkachov F. V., Phys. Lett., 116B:6 (1982), 455–458 | DOI | MR

[15] Bogolyubov N. N., Izbr. tr. po statisticheskoi fizike, MGU, M., 1979, 342 pp. | MR

[16] Okun L. B., Voloshin M. B., Zakharov V. I., On the Prize of Integrally Charged Quarks, Preprint ITEP-79, ITEP, M., 1979 ; Игнатьев А. Ю., Кузьмин В. А., Матвеев В. А., Тавхелидзе А. Н., Четыркин К. Г., Шапошников М. Е., ТМФ, 47:2 (1981), 147–162 | MR

[17] t'Hooft G., Phys. Rev. D, 14:12 (1976), 3432–3450 | DOI